import gradio as gr import random import spacy import torch from transformers import MT5Tokenizer, MT5ForConditionalGeneration device = torch.device("cuda" if torch.cuda.is_available() else "cpu") tokenizer = MT5Tokenizer.from_pretrained("potsawee/mt5-english-thai-large-translation") translator = MT5ForConditionalGeneration.from_pretrained("potsawee/mt5-english-thai-large-translation") summarizer = MT5ForConditionalGeneration.from_pretrained("potsawee/mt5-english-thai-large-summarization") translator.eval() summarizer.eval() translator.to(device) summarizer.to(device) nlp = spacy.load("en_core_web_sm") def generate_output( task, text, ): if task == 'Translation': sentences = [sent.text.strip() for sent in nlp(text).sents] # List[spacy.tokens.span.Span] gen_texts = [] for sentence in sentences: inputs = tokenizer( [sentence], padding="longest", max_length=1024, truncation=True, return_tensors="pt", ).to(device) outputs = translator.generate( **inputs, max_new_tokens=256, ) gen_text_ = tokenizer.decode(outputs[0], skip_special_tokens=True) gen_texts.append(gen_text_) return " ".join(gen_texts) elif task == 'Summarization': inputs = tokenizer( [text], padding="longest", max_length=1024, truncation=True, return_tensors="pt", ).to(device) outputs = summarizer.generate( **inputs, max_new_tokens=256, ) gen_text = tokenizer.decode(outputs[0], skip_special_tokens=True) else: raise ValueError("task undefined!") return gen_text TASKS = ["Translation", "Summarization"] demo = gr.Interface( fn=generate_output, inputs=[ gr.components.Radio(label="Task", choices=TASKS, value="Translation"), gr.components.Textbox(label="Text (in English)", lines=10), ], outputs=gr.Textbox(label="Text (in Thai)", lines=4), # examples=[["Building a translation demo with Gradio is so easy!", "eng_Latn", "spa_Latn"]], cache_examples=False, title="English🇬🇧 to Thai🇹🇭 | Translation or Summarization", description="Provide some text (in English) & select one of the tasks (Translation or Summarization). Note that currently the model only supports text up to 1024 tokens. The base architecture is mt5-large with the embeddings filtered to only English and Thai tokens and fine-tuned to XSum (Eng2Thai) Dataset (https://huggingface.co/datasets/potsawee/xsum_eng2thai). This is only after training for 1 epoch of xsum (the quality is not production-ready), just a quick proof-of-concept about fine-tuning on translated texts.", allow_flagging='never' ) demo.launch()