library(shiny) library(bslib) library(dplyr) library(ggplot2) library(minhub) model <- gptneox() # Find subset of columns that are suitable for scatter plot df_num <- df |> select(where(is.numeric), -Year) ui <- page_fillable(theme = bs_theme(bootswatch = "minty"), layout_sidebar(fillable = TRUE, sidebar( varSelectInput("xvar", "X variable", df_num, selected = "Bill Length (mm)"), varSelectInput("yvar", "Y variable", df_num, selected = "Bill Depth (mm)"), checkboxGroupInput("species", "Filter by species", choices = unique(df$Species), selected = unique(df$Species) ), hr(), # Add a horizontal rule checkboxInput("by_species", "Show species", TRUE), checkboxInput("show_margins", "Show marginal plots", TRUE), checkboxInput("smooth", "Add smoother"), ), plotOutput("scatter") ) ) server <- function(input, output, session) { subsetted <- reactive({ req(input$species) df |> filter(Species %in% input$species) }) output$scatter <- renderPlot({ p <- ggplot(subsetted(), aes(!!input$xvar, !!input$yvar)) + list( theme(legend.position = "bottom"), if (input$by_species) aes(color=Species), geom_point(), if (input$smooth) geom_smooth() ) if (input$show_margins) { margin_type <- if (input$by_species) "density" else "histogram" p <- p |> ggExtra::ggMarginal(type = margin_type, margins = "both", size = 8, groupColour = input$by_species, groupFill = input$by_species) } p }, res = 100) } shinyApp(ui, server)