import argparse, os, sys, glob from omegaconf import OmegaConf from PIL import Image from tqdm import tqdm import numpy as np import torch from main import instantiate_from_config from ldm.models.diffusion.ddim import DDIMSampler def make_batch(image, mask, device): image = np.array(Image.open(image).convert("RGB")) image = image.astype(np.float32)/255.0 image = image[None].transpose(0,3,1,2) image = torch.from_numpy(image) mask = np.array(Image.open(mask).convert("L")) mask = mask.astype(np.float32)/255.0 mask = mask[None,None] mask[mask < 0.5] = 0 mask[mask >= 0.5] = 1 mask = torch.from_numpy(mask) masked_image = (1-mask)*image batch = {"image": image, "mask": mask, "masked_image": masked_image} for k in batch: batch[k] = batch[k].to(device=device) batch[k] = batch[k]*2.0-1.0 return batch if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--indir", type=str, nargs="?", help="dir containing image-mask pairs (`example.png` and `example_mask.png`)", ) parser.add_argument( "--outdir", type=str, nargs="?", help="dir to write results to", ) parser.add_argument( "--steps", type=int, default=50, help="number of ddim sampling steps", ) opt = parser.parse_args() masks = sorted(glob.glob(os.path.join(opt.indir, "*_mask.png"))) images = [x.replace("_mask.png", ".png") for x in masks] print(f"Found {len(masks)} inputs.") config = OmegaConf.load("models/ldm/inpainting_big/config.yaml") model = instantiate_from_config(config.model) model.load_state_dict(torch.load("models/ldm/inpainting_big/last.ckpt")["state_dict"], strict=False) device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") model = model.to(device) sampler = DDIMSampler(model) os.makedirs(opt.outdir, exist_ok=True) with torch.no_grad(): with model.ema_scope(): for image, mask in tqdm(zip(images, masks)): outpath = os.path.join(opt.outdir, os.path.split(image)[1]) batch = make_batch(image, mask, device=device) # encode masked image and concat downsampled mask c = model.cond_stage_model.encode(batch["masked_image"]) cc = torch.nn.functional.interpolate(batch["mask"], size=c.shape[-2:]) c = torch.cat((c, cc), dim=1) shape = (c.shape[1]-1,)+c.shape[2:] samples_ddim, _ = sampler.sample(S=opt.steps, conditioning=c, batch_size=c.shape[0], shape=shape, verbose=False) x_samples_ddim = model.decode_first_stage(samples_ddim) image = torch.clamp((batch["image"]+1.0)/2.0, min=0.0, max=1.0) mask = torch.clamp((batch["mask"]+1.0)/2.0, min=0.0, max=1.0) predicted_image = torch.clamp((x_samples_ddim+1.0)/2.0, min=0.0, max=1.0) inpainted = (1-mask)*image+mask*predicted_image inpainted = inpainted.cpu().numpy().transpose(0,2,3,1)[0]*255 Image.fromarray(inpainted.astype(np.uint8)).save(outpath)