from lime.lime_text import LimeTextExplainer from nltk.tokenize import sent_tokenize from predictors import predict_proba_quillbot def explainer(text): class_names = ['negative', 'positive'] explainer = LimeTextExplainer(class_names=class_names, split_expression=sent_tokenize) exp = explainer.explain_instance(text, predict_proba_quillbot, num_features=20, num_samples=300) sentences = [t[0] for t in exp.as_list()] attributions = [t[1] for t in exp.as_list()] l, weights = zip(*exp.local_exp[exp.available_labels()[0]]) sentences_weights = {sentences[i]: attributions[i] for i in l} print(sentences_weights) return sentences_weights def analyze_and_highlight(text): highlighted_text = "" sentences_weights = explainer(text) min_weight = min(sentences_weights.values()) max_weight = max(sentences_weights.values()) for sentence, weight in sentences_weights.items(): normalized_weight = (weight - min_weight) / (max_weight - min_weight) if weight >= 0: color = f'rgba(255, {255 * (1 - normalized_weight)}, {255 * (1 - normalized_weight)}, 1)' else: color = f'rgba({255 * normalized_weight}, 255, {255 * normalized_weight}, 1)' sentence = sentence.strip() if not sentence: continue highlighted_sentence = f'{sentence}. ' highlighted_text += highlighted_sentence return highlighted_text