# AI-generated image detection This is a group project developed by a team of two individuals. ## Managing Python packages Use of `pipenv` is recommended. The required packages are in `Pipfile`, and can be installed using `pipenv install`. ## Scraping script for Reddit `python scrape.py --subreddit midjourney --flair Showcase` This command will scrape the midjourney subreddit, and filter posts that contain the "Showcase" flair. The default number of images to scrape is 30000. The output will contain a parquet file containing metadata, and a csv file containing the urls. `img2dataset --url_list=urls/midjourney.csv --output_folder=data/midjourney --thread_count=64 --resize_mode=no --output_format=webdataset` This command will download the images in the webdataset format. ## Laion script for real images `wget -l1 -r --no-parent https://the-eye.eu/public/AI/cah/laion400m-met-release/laion400m-meta/ mv the-eye.eu/public/AI/cah/laion400m-met-release/laion400m-meta/ .` This command will download a 50GB url metadata dataset in 32 parquet files. `sample_laion_script.ipynb` This script consolidates the parquet files, excludes NSFW images, and selects a subset of 224,917 images. `combine_laion_script` This script combines the outputs from earlier into 1 parquet file. `img2dataset --url_list urls/laion.parquet --input_format "parquet" --url_col "URL" --caption_col "TEXT" --skip_reencode True --output_format webdataset --output_folder data/laion400m_data --processes_count 16 --thread_count 128 --resize_mode no --save_additional_columns '["NSFW","similarity","LICENSE"]' --enable_wandb True` This command will download the images in the webdataset format. ## Data splitting, preprocessing and loading `data_split.py` splits the data according to 80/10/10. The number of samples: ``` ./data/laion400m_data: (115346, 14418, 14419) ./data/genai-images/StableDiffusion: (22060, 2757, 2758) ./data/genai-images/midjourney: (21096, 2637, 2637) ./data/genai-images/dalle2: (13582, 1697, 1699) ./data/genai-images/dalle3: (12027, 1503, 1504) ``` Each sample contains image, target label(1 for GenAI images), and domain label(denoting which generator the image is from). The meaning of the domain label is: ``` DOMAIN_LABELS = { 0: "laion", 1: "StableDiffusion", 2: "dalle2", 3: "dalle3", 4: "midjourney" } ``` The `load_dataloader()` function in `dataloader.py` returns a `torchdata.dataloader2.DataLoader2` given a list of domains for GenAI images(subset of `[1, 2, 3, 4]`, LAION will always be included). When building the training dataset, data augmentation and class balanced sampling are applied. It is very memory intensive(>20G) and takes some time to fill its buffer before producing batches. Use the dataloader in this way: ``` for epoch in range(10): dl.seed(epoch) for d in dl: model(d) dl.shutdown() ```