# imports import gradio as gr import pandas as pd import torch from transformers import AutoModelForSeq2SeqLM, AutoTokenizer # select GPU if available device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # setup model and tokenizer model = AutoModelForSeq2SeqLM.from_pretrained( "facebook/nllb-200-distilled-600M").to(device) tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M") def predict(text): """_summary_ predict function to do translation task """ text = [text] inputs = tokenizer(text, return_tensors="pt", padding=True).to(device) translated_tokens = model.generate( **inputs, forced_bos_token_id=tokenizer.lang_code_to_id["npi_Deva"], max_length=30 ) return tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0] # call gradio interface examples = ["use this example to see translation in nepali", "this text is to test english to nepali translation"] gr.Interface(fn=predict, inputs=gr.Textbox(label="Input text"), outputs=gr.Textbox(label="Output text"), title="English-to-Nepali Translation", article="Author **Pramesh Gautam**, Follow me on [Twitter](https://twitter.com/pmgautam_)", css="footer {visibility: hidden}", examples=examples).launch()