import os import streamlit as st import torch try: from diffusers import CogVideoXImageToVideoPipeline pipeline_available = True except ImportError as e: pipeline_available = False st.error("Failed to import CogVideoXImageToVideoPipeline.") st.write(f"Debug info: {e}") # Streamlit interface st.title("Image to Video with Hugging Face") st.write("Upload an image and provide a prompt to generate a video.") # Check if the pipeline is available before proceeding if not pipeline_available: st.error("The required pipeline is unavailable. Please ensure you have the correct version of the diffusers library.") else: # File uploader for the input image uploaded_file = st.file_uploader("Upload an image (JPG or PNG):", type=["jpg", "jpeg", "png"]) prompt = st.text_input("Enter your prompt:", "A little girl is riding a bicycle at high speed. Focused, detailed, realistic.") # Cache migration step st.write("Migrating the cache for model files...") try: from transformers.utils import move_cache move_cache() st.write("Cache migration completed successfully.") except Exception as e: st.error(f"Cache migration failed: {e}") st.write("Proceeding without cache migration...") if uploaded_file and prompt: try: st.write(f"Uploaded file: {uploaded_file.name}") st.write(f"Prompt: {prompt}") # Save uploaded file st.write("Saving uploaded image...") with open("uploaded_image.jpg", "wb") as f: f.write(uploaded_file.read()) st.write("Uploaded image saved successfully.") # Load the image from diffusers.utils import load_image st.write("Loading image...") image = load_image("uploaded_image.jpg") st.write("Image loaded successfully.") # Initialize the pipeline st.write("Initializing the pipeline...") pipe = CogVideoXImageToVideoPipeline.from_pretrained( "THUDM/CogVideoX1.5-5B-I2V", torch_dtype=torch.bfloat16, cache_dir="./huggingface_cache", force_download=True # Ensure fresh download ) st.write("Pipeline initialized successfully.") # Enable optimizations pipe.enable_sequential_cpu_offload() pipe.vae.enable_tiling() pipe.vae.enable_slicing() # Generate video st.write("Generating video... This may take a while.") video_frames = pipe( prompt=prompt, image=image, num_videos_per_prompt=1, num_inference_steps=50, num_frames=81, guidance_scale=6, generator=torch.Generator(device="cuda").manual_seed(42), ).frames[0] st.write("Video generated successfully.") # Export video st.write("Exporting video...") from diffusers.utils import export_to_video video_path = "output.mp4" export_to_video(video_frames, video_path, fps=8) st.write("Video exported successfully.") # Display video st.video(video_path) except Exception as e: st.error(f"An error occurred: {e}") st.write(f"Debug info: {e}") else: st.write("Please upload an image and provide a prompt to get started.")