import tensorflow as tf import requests import gradio as gr inception_net = tf.keras.applications.MobileNetV2() # Obteniendo las labels de "https://git.io/JJkYN" respuesta = requests.get("https://git.io/JJkYN") etiquetas = respuesta.text.split("\n") def clasifica_imagen(inp): inp = inp.reshape((-1, 224, 224, 3)) inp = tf.keras.applications.mobilenet_v2.preprocess_input(inp) prediction = inception_net.predict(inp).flatten() confidences = {etiquetas[i]: float(prediction[i]) for i in range(1000)} return confidences demo = gr.Interface(fn=clasifica_imagen, inputs=gr.Image(shape=(224, 224)), outputs=gr.Label(num_top_classes=3) ) demo.launch()