""" HF Spaces (Docker SDK) app - Launches vLLM (OpenAI-compatible) on localhost:API_PORT - FastAPI proxies /v1/* → vLLM (so clients can use OpenAI SDK / LangChain) - Gradio UI at "/" - Defaults for A10G 24GB (Qwen 2.5 14B AWQ, 8k context) """ import os, time, threading, subprocess, requests from fastapi import FastAPI, Request, Response import gradio as gr MODEL_ID = os.environ.get("MODEL_ID", "Qwen/Qwen2.5-14B-Instruct-AWQ") API_PORT = int(os.environ.get("API_PORT", "8000")) # vLLM internal port SYSTEM_PROMPT = os.environ.get( "SYSTEM_PROMPT", "You are ExCom AI, a professional assistant that answers precisely and clearly." ) VLLM_ARGS = [ "python3", "-m", "vllm.entrypoints.openai.api_server", "--model", MODEL_ID, "--host", "0.0.0.0", "--port", str(API_PORT), "--served-model-name", "excom-ai", "--max-model-len", "8192", # fits A10G 24GB "--gpu-memory-utilization", "0.90", "--trust-remote-code", ] if "AWQ" in MODEL_ID.upper(): VLLM_ARGS += ["--quantization", "awq_marlin"] # faster AWQ kernel if available def launch_vllm(): print(f"[vLLM] Launch: {MODEL_ID}") subprocess.Popen(VLLM_ARGS) def wait_vllm_ready(timeout=900, interval=3): url = f"http://127.0.0.1:{API_PORT}/v1/models" start = time.time() while time.time() - start < timeout: try: r = requests.get(url, timeout=3) if r.ok: print("[vLLM] Ready.") return True except Exception: pass time.sleep(interval) print("[vLLM] Not ready in time.") return False threading.Thread(target=launch_vllm, daemon=True).start() threading.Thread(target=wait_vllm_ready, daemon=True).start() app = FastAPI() @app.get("/health") def health(): try: r = requests.get(f"http://127.0.0.1:{API_PORT}/v1/models", timeout=2) return {"upstream_ok": r.ok} except Exception as e: return {"upstream_ok": False, "error": str(e)} @app.get("/v1/models") def proxy_models(): r = requests.get(f"http://127.0.0.1:{API_PORT}/v1/models", timeout=30) return Response(content=r.content, media_type=r.headers.get("content-type","application/json"), status_code=r.status_code) @app.post("/v1/chat/completions") async def proxy_chat(req: Request): body = await req.body() r = requests.post(f"http://127.0.0.1:{API_PORT}/v1/chat/completions", data=body, headers={"Content-Type": "application/json"}, timeout=600) return Response(content=r.content, media_type=r.headers.get("content-type","application/json"), status_code=r.status_code) # -------- Gradio (messages mode) -------- _ready = {"ok": False} def ensure_ready(): if _ready["ok"]: return True if wait_vllm_ready(timeout=60): _ready["ok"] = True; return True return False def chat_fn(user_message: str, history: list[dict]): if not ensure_ready(): return "⏳ Model is loading… please retry shortly." messages = [{"role":"system","content":SYSTEM_PROMPT}] + history + [{"role":"user","content":user_message}] payload = {"model":"excom-ai","messages":messages,"temperature":0.4} r = requests.post(f"http://127.0.0.1:{API_PORT}/v1/chat/completions", json=payload, timeout=600) r.raise_for_status() return r.json()["choices"][0]["message"]["content"] ui = gr.ChatInterface(fn=chat_fn, title="ExCom AI — Qwen 2.5 14B AWQ (vLLM)", type="messages") ui.queue() app = gr.mount_gradio_app(app, ui, path="/")