import streamlit as st from transformers import pipeline # Function to load the model @st.cache_data def load_model(): summarizer = pipeline("text2text-generation", model="pk248/pegasus-samsum") return summarizer # Load the model model = load_model() # Streamlit UI st.title("Text Summarization App") st.write("This app uses the pk248/pegasus-samsum model to summarize text.") # Text input user_input = st.text_area("Enter text to summarize:", height=200) # Summarize button if st.button("Summarize"): if user_input: # Model inference summary = model(user_input, max_length=1000, min_length=5, length_penalty=2.0) st.write(summary[0]["generated_text"]) else: st.write("Please enter some text to summarize.")