pj2111 commited on
Commit
9301e19
Β·
1 Parent(s): 02a6902

app modified to pages

Browse files
.DS_Store CHANGED
Binary files a/.DS_Store and b/.DS_Store differ
 
Hello.py ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+
3
+ st.set_page_config(
4
+ page_title="Zero-Shot Classification",
5
+ page_icon="πŸ‘‹",
6
+ )
7
+
8
+ st.write("# Welcome to Zero-Shot Classification! πŸ‘‹")
9
+
10
+ st.sidebar.success("Select a demo above.")
11
+
12
+ st.markdown(
13
+ """
14
+ Zero-shot text classification is a task in natural language processing where a model is trained on a
15
+ set of labeled examples but is then able to classify new examples from previously unseen classes.
16
+ """
17
+ )
18
+ st.image('capture.png')
capture.png ADDED
app.py β†’ pages/1_Classification.py RENAMED
File without changes
pages/2_Batch_classification.py ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import streamlit as st
3
+ from transformers import pipeline
4
+
5
+ st.title("Zeroshot Classification - Batched")
6
+ st.caption("A streamlit powered app")
7
+
8
+ uploaded_file = st.file_uploader("Upload your file here")
9
+ if uploaded_file is not None:
10
+ # Can be used wherever a "file-like" object is accepted:
11
+ df = pd.read_excel(uploaded_file)
12
+ st.write(df)
13
+ col_name = st.text_input("Which column contains text that you want to classify")
14
+
15
+ classes = st.text_input("Enter possible class names (comma-separated)")
16
+
17
+ pipe = pipeline('zero-shot-classification','facebook/bart-large-mnli')
18
+ batch_output = pipe(list(df[col_name]),classes)
19
+ df['predicted']=[i['labels'][0] for i in batch_output]
20
+
21
+ st.write(df)
22
+
23
+ @st.cache_data
24
+ def convert_df(df):
25
+ # IMPORTANT: Cache the conversion to prevent computation on every rerun
26
+ return df.to_csv().encode("utf-8")
27
+
28
+ csv = convert_df(df)
29
+
30
+ st.download_button(
31
+ label="Download data as CSV",
32
+ data=csv,
33
+ file_name="large_df.csv",
34
+ mime="text/csv",
35
+ )
36
+ # with st.form('upload-form', clear_on_submit=True):
37
+ # uploaded_file = st.file_uploader("Upload your file here")
38
+ # submitted = st.form_submit_button("Upload")