"""VIP.""" import json import re import cv2 from tqdm import trange import numpy as np import vip def make_prompt(description, top_n=3): return f""" INSTRUCTIONS: You are tasked to locate an object, region, or point in space in the given annotated image according to a description. The image is annoated with numbered circles. Choose the top {top_n} circles that have the most overlap with and/or is closest to what the description is describing in the image. You are a five-time world champion in this game. Give a one sentence analysis of why you chose those points. Provide your answer at the end in a valid JSON of this format: {{"points": []}} DESCRIPTION: {description} IMAGE: """.strip() def extract_json(response, key): json_part = re.search(r"\{.*\}", response, re.DOTALL) parsed_json = {} if json_part: json_data = json_part.group() # Parse the JSON data parsed_json = json.loads(json_data) else: print("No JSON data found ******\n", response) return parsed_json[key] def vip_perform_selection(prompter, vlm, im, desc, arm_coord, samples, top_n): """Perform one selection pass given samples.""" image_circles_np = prompter.add_arrow_overlay_plt( image=im, samples=samples, arm_xy=arm_coord, log_image=False ) _, encoded_image_circles = cv2.imencode(".png", image_circles_np) prompt_seq = [make_prompt(desc, top_n=top_n), encoded_image_circles] response = vlm.query(prompt_seq) try: arrow_ids = extract_json(response, "points") except Exception as e: print(e) arrow_ids = [] return arrow_ids, image_circles_np def vip_runner( vlm, im, desc, style, action_spec, n_samples_init=25, n_samples_opt=10, n_iters=3, n_parallel_trials=1, ): """VIP.""" prompter = vip.VisualIterativePrompter( style, action_spec, vip.SupportedEmbodiments.HF_DEMO ) output_ims = [] arm_coord = (int(im.shape[1] / 2), int(im.shape[0] / 2)) new_samples = [] center_mean = action_spec["loc"] for i in range(n_parallel_trials): center_mean = action_spec["loc"] center_std = action_spec["scale"] for itr in trange(n_iters): if itr == 0: style["num_samples"] = n_samples_init else: style["num_samples"] = n_samples_opt samples = prompter.sample_actions(im, arm_coord, center_mean, center_std) arrow_ids, image_circles_np = vip_perform_selection( prompter, vlm, im, desc, arm_coord, samples, top_n=3 ) # plot sampled circles as red selected_samples = [] for selected_id in arrow_ids: sample = samples[selected_id] sample.coord.color = (255, 0, 0) selected_samples.append(sample) image_circles_marked_np = prompter.add_arrow_overlay_plt( image_circles_np, selected_samples, arm_coord ) output_ims.append(image_circles_marked_np) yield output_ims, f"Image generated for parallel sample {i+1}/{n_parallel_trials} iteration {itr+1}/{n_iters}. Still working..." # if at last iteration, pick one answer out of the selected ones if itr == n_iters - 1: arrow_ids, _ = vip_perform_selection( prompter, vlm, im, desc, arm_coord, selected_samples, top_n=1 ) selected_samples = [] for selected_id in arrow_ids: sample = samples[selected_id] sample.coord.color = (255, 0, 0) selected_samples.append(sample) image_circles_marked_np = prompter.add_arrow_overlay_plt( im, selected_samples, arm_coord ) output_ims.append(image_circles_marked_np) new_samples += selected_samples yield output_ims, f"Image generated for parallel sample {i+1}/{n_parallel_trials} last iteration. Still working..." center_mean, center_std = prompter.fit(arrow_ids, samples) if n_parallel_trials > 1: # adjust sample label to avoid duplications for sample_id in range(len(new_samples)): new_samples[sample_id].label = str(sample_id) arrow_ids, _ = vip_perform_selection( prompter, vlm, im, desc, arm_coord, new_samples, top_n=1 ) selected_samples = [] for selected_id in arrow_ids: sample = new_samples[selected_id] sample.coord.color = (255, 0, 0) selected_samples.append(sample) image_circles_marked_np = prompter.add_arrow_overlay_plt( im, selected_samples, arm_coord ) output_ims.append(image_circles_marked_np) center_mean, _ = prompter.fit(arrow_ids, new_samples) if output_ims: yield ( output_ims, ( "Final selected coordinate:" f" {np.round(prompter.action_to_coord(center_mean, im, arm_coord).xy, decimals=0)}" ), ) return [], "Unable to understand query"