import gradio as gr import cv2 import requests import os from ultralytics import YOLO # URLs of files to be downloaded file_urls = [ 'https://www.dropbox.com/s/b5g97xo901zb3ds/pothole_example.jpg?dl=1', 'https://www.dropbox.com/s/86uxlxxlm1iaexa/pothole_screenshot.png?dl=1', 'https://www.dropbox.com/s/7sjfwncffg8xej2/video_7.mp4?dl=1' ] # Function to download a file if it does not exist locally def download_file(url, save_name): if not os.path.exists(save_name): response = requests.get(url) with open(save_name, 'wb') as file: file.write(response.content) # Download files using the URLs for i, url in enumerate(file_urls): save_name = "video.mp4" if url.endswith('.mp4') else f"image_{i}.jpg" download_file(url, save_name) # Load the YOLO model model = YOLO('best.pt') # Paths for example images and video image_paths = [['image_0.jpg'], ['image_1.jpg']] video_path = [['video.mp4']] # Function to show predictions on an image def show_preds_image(image_path): image = cv2.imread(image_path) outputs = model.predict(source=image_path) results = outputs[0].cpu().numpy() for det in results.boxes.xyxy: cv2.rectangle( image, (int(det[0]), int(det[1])), (int(det[2]), int(det[3])), color=(0, 0, 255), thickness=2, lineType=cv2.LINE_AA ) return cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # Gradio interface for image inference inputs_image = gr.Image(type="filepath", label="Input Image") outputs_image = gr.Image(type="numpy", label="Output Image") interface_image = gr.Interface( fn=show_preds_image, inputs=inputs_image, outputs=outputs_image, title="Pothole Detector - Image Inference", examples=image_paths, cache_examples=False, ) # Function to show predictions on a video def show_preds_video(video_path): cap = cv2.VideoCapture(video_path) while cap.isOpened(): ret, frame = cap.read() if not ret: break frame_copy = frame.copy() outputs = model.predict(source=frame) results = outputs[0].cpu().numpy() for det in results.boxes.xyxy: cv2.rectangle( frame_copy, (int(det[0]), int(det[1])), (int(det[2]), int(det[3])), color=(0, 0, 255), thickness=2, lineType=cv2.LINE_AA ) yield cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB) cap.release() # Gradio interface for video inference inputs_video = gr.Video(type="filepath", label="Input Video") outputs_video = gr.Image(type="numpy", label="Output Frame") interface_video = gr.Interface( fn=show_preds_video, inputs=inputs_video, outputs=outputs_video, title="Pothole Detector - Video Inference", examples=video_path, cache_examples=False, ) # Combine the image and video interfaces into a tabbed interface gr.TabbedInterface( [interface_image, interface_video], tab_names=['Image Inference', 'Video Inference'] ).queue().launch()