import gradio as gr import librosa import tensorflow as tf from huggingface_hub import from_pretrained_keras from itertools import groupby import numpy as np model = from_pretrained_keras("CXDJY/snore_ai") def load_audio_to_tensor(filename): audio, sampling_rate = librosa.load(filename, sr=None, mono=True) # load audio and convert to mono wave = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000) # resample to 16KHz rms = librosa.feature.rms(y=audio)[0] # get root mean square of audio volume = np.mean(rms) # get volume of audio return wave, volume def preprocess_mp3(sample, index): sample = sample[0] sample = tf.cast(sample, tf.float32) zero_padding = tf.zeros([16000] - tf.shape(sample), dtype=tf.float32) wave = tf.concat([zero_padding, sample], 0) spectrogram = tf.signal.stft(wave, frame_length=320, frame_step=32) spectrogram = tf.abs(spectrogram) spectrogram = tf.expand_dims(spectrogram, axis=2) return spectrogram def greet(name): wave, volume = load_audio_to_tensor(name) # power = sum(wave * 2) / len(wave) # audio signal power # SNR = 3.5 # signal-to-noise ratio # SNR_linear = 10 ** (SNR / 10) # convert SNR to linear scale # noise_power = power / SNR_linear # noise power # # add noise to audio to simulate environment # noise = np.random.normal(0, noise_power ** 0.5, wave.shape) # generate noise # wave = (wave + noise) * 32768.0 # add noise to the audio signal # tensor_wave = tf.convert_to_tensor(wave, dtype=tf.float32) # convert to tensor # min_wave = min(wave) if len(wave) > 16000: sequence_stride = 16000 else: sequence_stride = 16000-1 # create audio slices audio_slices = tf.keras.utils.timeseries_dataset_from_array(wave, wave, sequence_length=16000, sequence_stride=sequence_stride, batch_size=1) samples, index = audio_slices.as_numpy_iterator().next() audio_slices = audio_slices.map(preprocess_mp3) audio_slices = audio_slices.batch(64) # model = from_pretrained_keras("CXDJY/snore_ai") yhat = model.predict(audio_slices) yhat = [1 if prediction > 0.99 else 0 for prediction in yhat] yhat1 = [key for key, group in groupby(yhat)] return yhat1 iface = gr.Interface(fn=greet, inputs="file", outputs="text") # iface = gr.Interface(fn=greet, inputs="audio", outputs="text") iface.launch()