import numpy as np import gradio as gr import ast import requests import logging from rembg import new_session from cutter import remove, make_label from utils import * API_URL_INITIAL = "https://ysharma-playground-ai-exploration.hf.space/run/initial_dataframe" API_URL_NEXT10 = "https://ysharma-playground-ai-exploration.hf.space/run/next_10_rows" from theme_dropdown import create_theme_dropdown # noqa: F401 dropdown, js = create_theme_dropdown() models = [ {"name": "Stable Diffusion 2", "url": "stabilityai/stable-diffusion-2-1"}, {"name": "stability AI", "url": "stabilityai/stable-diffusion-2-1-base"}, {"name": "Compressed-S-D", "url": "nota-ai/bk-sdm-small"}, {"name": "Future Diffusion", "url": "nitrosocke/Future-Diffusion"}, {"name": "JWST Deep Space Diffusion", "url": "dallinmackay/JWST-Deep-Space-diffusion"}, {"name": "Robo Diffusion 3 Base", "url": "nousr/robo-diffusion-2-base"}, {"name": "Robo Diffusion", "url": "nousr/robo-diffusion"}, {"name": "Tron Legacy Diffusion", "url": "dallinmackay/Tron-Legacy-diffusion"}, ] #### REM-BG remove_bg_models = { "TracerUniversalB7": "TracerUniversalB7", "U2NET": "u2net", "U2NET Human Seg": "u2net_human_seg", "U2NET Cloth Seg": "u2net_cloth_seg" } model_choices = keys(remove_bg_models) def predict(image, session, smoot, matting, bg_color): session = new_session(remove_bg_models[session]) try: return remove(session, image, smoot, matting, bg_color) except ValueError as err: logging.error(err) return make_label(str(err)), None def change_show_mask(chk_state): return gr.Image.update(visible=chk_state) def change_include_matting(chk_state): return gr.Box.update(visible=chk_state), (0, 0, 0), 0, 0, 0 def change_foreground_threshold(fg_value, value): fg, bg, erode = value return fg_value, bg, erode def change_background_threshold(bg_value, value): fg, bg, erode = value return fg, bg_value, erode def change_erode_size(erode_value, value): fg, bg, erode = value return fg, bg, erode_value def set_dominant_color(chk_state): return chk_state, gr.ColorPicker.update(value=False, visible=not chk_state) def change_picker_color(picker, dominant): if not dominant: return picker return dominant def change_background_mode(chk_state): return gr.ColorPicker.update(value=False, visible=chk_state), \ gr.Checkbox.update(value=False, visible=chk_state) ########### text_gen = gr.Interface.load("spaces/daspartho/prompt-extend") current_model = models[0] models2 = [] for model in models: model_url = f"models/{model['url']}" loaded_model = gr.Interface.load(model_url, live=True, preprocess=True) models2.append(loaded_model) def text_it(inputs, text_gen=text_gen): return text_gen(inputs) def flip_text(x): return x[::-1] def send_it(inputs, model_choice): proc = models2[model_choice] return proc(inputs) def flip_image(x): return np.fliplr(x) def set_model(current_model_index): global current_model current_model = models[current_model_index] return gr.update(value=f"{current_model['name']}") #define inference function #First: Get initial images for the grid display def get_initial_images(): response = requests.post(API_URL_INITIAL, json={ "data": [] }).json() #data = response["data"][0]['data'][0][0][:-1] response_dict = response['data'][0] return response_dict #, [resp[0][:-1] for resp in response["data"][0]["data"]] #Second: Process response dictionary to get imges as hyperlinked image tags def process_response(response_dict): return [resp[0][:-1] for resp in response_dict["data"]] response_dict = get_initial_images() initial = process_response(response_dict) initial_imgs = '
\n' + "\n".join(initial[:-1]) #Third: Load more images for the grid def get_next10_images(response_dict, row_count): row_count = int(row_count) #print("(1)",type(response_dict)) #Convert the string to a dictionary if isinstance(response_dict, dict) == False : response_dict = ast.literal_eval(response_dict) response = requests.post(API_URL_NEXT10, json={ "data": [response_dict, row_count ] #len(initial)-1 }).json() row_count+=10 response_dict = response['data'][0] #print("(2)",type(response)) #print("(3)",type(response['data'][0])) next_set = [resp[0][:-1] for resp in response_dict["data"]] next_set_images = '
\n' + "\n".join(next_set[:-1]) return response_dict, row_count, next_set_images #response['data'][0] with gr.Blocks(theme='pikto/theme@>=0.0.1,<0.0.3') as pan: gr.Markdown("AI CONTENT TOOLS.") with gr.Tab("T-to-I"): ##model = ("stabilityai/stable-diffusion-2-1") model_name1 = gr.Dropdown( label="Choose Model", choices=[m["name"] for m in models], type="index", value=current_model["name"], interactive=True, ) input_text = gr.Textbox(label="Prompt idea",) ## run = gr.Button("Generate Images") with gr.Row(): see_prompts = gr.Button("Generate Prompts") run = gr.Button("Generate Images", variant="primary") with gr.Row(): magic1 = gr.Textbox(label="Generated Prompt", lines=2) output1 = gr.Image(label="") with gr.Row(): magic2 = gr.Textbox(label="Generated Prompt", lines=2) output2 = gr.Image(label="") run.click(send_it, inputs=[magic1, model_name1], outputs=[output1]) run.click(send_it, inputs=[magic2, model_name1], outputs=[output2]) see_prompts.click(text_it, inputs=[input_text], outputs=[magic1]) see_prompts.click(text_it, inputs=[input_text], outputs=[magic2]) model_name1.change(set_model, inputs=model_name1, outputs=[output1, output2,]) with gr.Tab("AI Library"): #Using Gradio Demos as API - This is Hot! #get_next10_images(response_dict=response_dict, row_count=9) #position: fixed; top: 0; left: 0; width: 100%; background-color: #fff; padding: 20px; box-shadow: 0 5px 10px rgba(0, 0, 0, 0.2); #Defining the Blocks layout # with gr.Blocks(css = """#img_search img {width: 100%; height: 100%; object-fit: cover;}""") as demo: gr.HTML(value="top of page", elem_id="top",visible=False) gr.HTML("""

Using Gradio API - 2


Stream PlaygroundAI Images ina beautiful grid


""") with gr.Tab("AI Library"): #with gr.Tab(): #(elem_id = "col-container"): #gr.Column(): #(elem_id = "col-container"): b1 = gr.Button("Load More Images").style(full_width=False) df = gr.Textbox(visible=False,elem_id='dataframe', value=response_dict) row_count = gr.Number(visible=False, value=19 ) img_search = gr.HTML(label = 'Images from PlaygroundAI dataset', elem_id="img_search", value=initial_imgs ) #initial[:-1] ) b1.click(get_next10_images, [df, row_count], [df, row_count, img_search], api_name = "load_playgroundai_images" ) ########################## REM-BG with gr.Tab("Rem_BG"): color_state = gr.State(value=False) matting_state = gr.State(value=(0, 0, 0)) gr.HTML("

Remove Background Tool

") with gr.Row(equal_height=False): with gr.Column(): input_img = gr.Image(type="pil", label="Input image") drp_models = gr.Dropdown(choices=model_choices, label="Model Segment", value="TracerUniversalB7") with gr.Row(): chk_include_matting = gr.Checkbox(label="Matting", value=False) chk_smoot_mask = gr.Checkbox(label="Smoot Mask", value=False) chk_show_mask = gr.Checkbox(label="Show Mask", value=False) with gr.Box(visible=False) as slider_matting: slr_fg_threshold = gr.Slider(0, 300, value=270, step=1, label="Alpha matting foreground threshold") slr_bg_threshold = gr.Slider(0, 50, value=20, step=1, label="Alpha matting background threshold") slr_erode_size = gr.Slider(0, 20, value=11, step=1, label="Alpha matting erode size") with gr.Box(): with gr.Row(): chk_change_color = gr.Checkbox(label="Change background color", value=False) pkr_color = gr.ColorPicker(label="Pick a new color", visible=False) chk_dominant = gr.Checkbox(label="Use dominant color", value=False, visible=False) ####################### ############################ ############################# run_btn = gr.Button(value="Remove background", variant="primary") with gr.Column(): output_img = gr.Image(type="pil", label="Image Result") mask_img = gr.Image(type="pil", label="Image Mask", visible=False) gr.ClearButton(components=[input_img, output_img, mask_img]) chk_include_matting.change(change_include_matting, inputs=[chk_include_matting], outputs=[slider_matting, matting_state, slr_fg_threshold, slr_bg_threshold, slr_erode_size]) slr_bg_threshold.change(change_background_threshold, inputs=[slr_bg_threshold, matting_state], outputs=[matting_state]) slr_fg_threshold.change(change_foreground_threshold, inputs=[slr_fg_threshold, matting_state], outputs=[matting_state]) slr_erode_size.change(change_erode_size, inputs=[slr_erode_size, matting_state], outputs=[matting_state]) chk_show_mask.change(change_show_mask, inputs=[chk_show_mask], outputs=[mask_img]) chk_change_color.change(change_background_mode, inputs=[chk_change_color], outputs=[pkr_color, chk_dominant]) pkr_color.change(change_picker_color, inputs=[pkr_color, chk_dominant], outputs=[color_state]) chk_dominant.change(set_dominant_color, inputs=[chk_dominant], outputs=[color_state, pkr_color]) run_btn.click(predict, inputs=[input_img, drp_models, chk_smoot_mask, matting_state, color_state], outputs=[output_img, mask_img]) # text_input = gr.Textbox() ## Diffuser # image_output = gr.Image() # image_button = gr.Button("Flip") # text_button.click(flip_text, inputs=text_input, outputs=text_output) # image_button.click(flip_image, inputs=image_input, outputs=image_output) pan.queue(concurrency_count=200) pan.launch(inline=True, show_api=True, max_threads=400)