import numpy as np import gradio as gr import ast import requests import logging from rembg import new_session from cutter import remove, make_label from utils import * API_URL_INITIAL = "https://ysharma-playground-ai-exploration.hf.space/run/initial_dataframe" API_URL_NEXT10 = "https://ysharma-playground-ai-exploration.hf.space/run/next_10_rows" from theme_dropdown import create_theme_dropdown # noqa: F401 dropdown, js = create_theme_dropdown() models = [ {"name": "Stable Diffusion 2", "url": "stabilityai/stable-diffusion-2-1"}, {"name": "stability AI", "url": "stabilityai/stable-diffusion-2-1-base"}, {"name": "Compressed-S-D", "url": "nota-ai/bk-sdm-small"}, {"name": "Future Diffusion", "url": "nitrosocke/Future-Diffusion"}, {"name": "JWST Deep Space Diffusion", "url": "dallinmackay/JWST-Deep-Space-diffusion"}, {"name": "Robo Diffusion 3 Base", "url": "nousr/robo-diffusion-2-base"}, {"name": "Robo Diffusion", "url": "nousr/robo-diffusion"}, {"name": "Tron Legacy Diffusion", "url": "dallinmackay/Tron-Legacy-diffusion"}, ] #### REM-BG remove_bg_models = { "TracerUniversalB7": "TracerUniversalB7", "U2NET": "u2net", "U2NET Human Seg": "u2net_human_seg", "U2NET Cloth Seg": "u2net_cloth_seg" } model_choices = keys(remove_bg_models) def predict(image, session, smoot, matting, bg_color): session = new_session(remove_bg_models[session]) try: return remove(session, image, smoot, matting, bg_color) except ValueError as err: logging.error(err) return make_label(str(err)), None def change_show_mask(chk_state): return gr.Image.update(visible=chk_state) def change_include_matting(chk_state): return gr.Box.update(visible=chk_state), (0, 0, 0), 0, 0, 0 def change_foreground_threshold(fg_value, value): fg, bg, erode = value return fg_value, bg, erode def change_background_threshold(bg_value, value): fg, bg, erode = value return fg, bg_value, erode def change_erode_size(erode_value, value): fg, bg, erode = value return fg, bg, erode_value def set_dominant_color(chk_state): return chk_state, gr.ColorPicker.update(value=False, visible=not chk_state) def change_picker_color(picker, dominant): if not dominant: return picker return dominant def change_background_mode(chk_state): return gr.ColorPicker.update(value=False, visible=chk_state), \ gr.Checkbox.update(value=False, visible=chk_state) ########### text_gen = gr.Interface.load("spaces/daspartho/prompt-extend") current_model = models[0] models2 = [] for model in models: model_url = f"models/{model['url']}" loaded_model = gr.Interface.load(model_url, live=True, preprocess=True) models2.append(loaded_model) def text_it(inputs, text_gen=text_gen): return text_gen(inputs) def flip_text(x): return x[::-1] def send_it(inputs, model_choice): proc = models2[model_choice] return proc(inputs) def flip_image(x): return np.fliplr(x) def set_model(current_model_index): global current_model current_model = models[current_model_index] return gr.update(value=f"{current_model['name']}") #define inference function #First: Get initial images for the grid display def get_initial_images(): response = requests.post(API_URL_INITIAL, json={ "data": [] }).json() #data = response["data"][0]['data'][0][0][:-1] response_dict = response['data'][0] return response_dict #, [resp[0][:-1] for resp in response["data"][0]["data"]] #Second: Process response dictionary to get imges as hyperlinked image tags def process_response(response_dict): return [resp[0][:-1] for resp in response_dict["data"]] response_dict = get_initial_images() initial = process_response(response_dict) initial_imgs = '