import numpy as np import gradio as gr import ast import requests from theme_dropdown import create_theme_dropdown # noqa: F401 dropdown, js = create_theme_dropdown() models = [ {"name": "Stable Diffusion 2", "url": "stabilityai/stable-diffusion-2-1"}, {"name": "stability AI", "url": "stabilityai/stable-diffusion-2-1-base"}, {"name": "Compressed-S-D", "url": "nota-ai/bk-sdm-small"}, {"name": "Future Diffusion", "url": "nitrosocke/Future-Diffusion"}, {"name": "JWST Deep Space Diffusion", "url": "dallinmackay/JWST-Deep-Space-diffusion"}, {"name": "Robo Diffusion 3 Base", "url": "nousr/robo-diffusion-2-base"}, {"name": "Robo Diffusion", "url": "nousr/robo-diffusion"}, {"name": "Tron Legacy Diffusion", "url": "dallinmackay/Tron-Legacy-diffusion"}, ] text_gen = gr.Interface.load("spaces/daspartho/prompt-extend") current_model = models[0] models2 = [] for model in models: model_url = f"models/{model['url']}" loaded_model = gr.Interface.load(model_url, live=True, preprocess=True) models2.append(loaded_model) def text_it(inputs, text_gen=text_gen): return text_gen(inputs) def flip_text(x): return x[::-1] def send_it(inputs, model_choice): proc = models2[model_choice] return proc(inputs) def flip_image(x): return np.fliplr(x) def set_model(current_model_index): global current_model current_model = models[current_model_index] return gr.update(value=f"{current_model['name']}") with gr.Blocks(theme='pikto/theme@>=0.0.1,<0.0.3') as pan: gr.Markdown("AI CONTENT TOOLS.") with gr.Tab("T-to-I"): ##model = ("stabilityai/stable-diffusion-2-1") model_name1 = gr.Dropdown( label="Choose Model", choices=[m["name"] for m in models], type="index", value=current_model["name"], interactive=True, ) input_text = gr.Textbox(label="Prompt idea",) ## run = gr.Button("Generate Images") with gr.Row(): see_prompts = gr.Button("Generate Prompts") run = gr.Button("Generate Images", variant="primary") with gr.Row(): magic1 = gr.Textbox(label="Generated Prompt", lines=2) output1 = gr.Image(label="") with gr.Row(): magic2 = gr.Textbox(label="Generated Prompt", lines=2) output2 = gr.Image(label="") run.click(send_it, inputs=[magic1, model_name1], outputs=[output1]) run.click(send_it, inputs=[magic2, model_name1], outputs=[output2]) see_prompts.click(text_it, inputs=[input_text], outputs=[magic1]) see_prompts.click(text_it, inputs=[input_text], outputs=[magic2]) model_name1.change(set_model, inputs=model_name1, outputs=[output1, output2,]) with gr.Tab("Flip Image"): #Using Gradio Demos as API - This is Hot! API_URL_INITIAL = "https://ysharma-playground-ai-exploration.hf.space/run/initial_dataframe" API_URL_NEXT10 = "https://ysharma-playground-ai-exploration.hf.space/run/next_10_rows" #define inference function #First: Get initial images for the grid display def get_initial_images(): response = requests.post(API_URL_INITIAL, json={ "data": [] }).json() #data = response["data"][0]['data'][0][0][:-1] response_dict = response['data'][0] return response_dict #, [resp[0][:-1] for resp in response["data"][0]["data"]] #Second: Process response dictionary to get imges as hyperlinked image tags def process_response(response_dict): return [resp[0][:-1] for resp in response_dict["data"]] response_dict = get_initial_images() initial = process_response(response_dict) initial_imgs = '
\n' + "\n".join(initial[:-1]) #Third: Load more images for the grid def get_next10_images(response_dict, row_count): row_count = int(row_count) #print("(1)",type(response_dict)) #Convert the string to a dictionary if isinstance(response_dict, dict) == False : response_dict = ast.literal_eval(response_dict) response = requests.post(API_URL_NEXT10, json={ "data": [response_dict, row_count ] #len(initial)-1 }).json() row_count+=10 response_dict = response['data'][0] #print("(2)",type(response)) #print("(3)",type(response['data'][0])) next_set = [resp[0][:-1] for resp in response_dict["data"]] next_set_images = '
\n' + "\n".join(next_set[:-1]) return response_dict, row_count, next_set_images #response['data'][0] #get_next10_images(response_dict=response_dict, row_count=9) #position: fixed; top: 0; left: 0; width: 100%; background-color: #fff; padding: 20px; box-shadow: 0 5px 10px rgba(0, 0, 0, 0.2); #Defining the Blocks layout with gr.Blocks(css = """#img_search img {width: 100%; height: 100%; object-fit: cover;}""") as demo: gr.HTML(value="top of page", elem_id="top",visible=False) gr.HTML("""

Using Gradio Demos as API - 2


Stream PlaygroundAI Images ina beautiful grid


""") with gr.Accordion(label="Details about the working:", open=False, elem_id='accordion'): gr.HTML("""


▶️Do you see the "view api" link located in the footer of this application? By clicking on this link, a page will open which provides documentation on the REST API that developers can use to query the Interface function / Block events.
▶️In this demo, I am making such an API request to the Playground_AI_Exploration Space.
▶️I am exposing an API endpoint of this Gradio app as well. This can easily be done by one line of code, just set the api_name parameter of the event listener.

""") with gr.Column(): #(elem_id = "col-container"): b1 = gr.Button("Load More Images").style(full_width=False) df = gr.Textbox(visible=False,elem_id='dataframe', value=response_dict) row_count = gr.Number(visible=False, value=19 ) img_search = gr.HTML(label = 'Images from PlaygroundAI dataset', elem_id="img_search", value=initial_imgs ) #initial[:-1] ) gr.HTML('''
Duplicate Space

''') b1.click(get_next10_images, [df, row_count], [df, row_count, img_search], api_name = "load_playgroundai_images" ) with gr.Tab("Diffuser"): with gr.Row(): text_input = gr.Textbox() ## Diffuser image_output = gr.Image() image_button = gr.Button("Flip") # text_button.click(flip_text, inputs=text_input, outputs=text_output) # image_button.click(flip_image, inputs=image_input, outputs=image_output) pan.queue(concurrency_count=200) pan.launch(inline=True, show_api=True, max_threads=400)