import os os.system('pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu102/torch1.9/index.html') os.system("git clone https://github.com/microsoft/unilm.git") import sys sys.path.append("unilm") import cv2 from unilm.dit.object_detection.ditod import add_vit_config import torch import numpy as np from detectron2.config import CfgNode as CN from detectron2.config import get_cfg from detectron2.utils.visualizer import ColorMode, Visualizer from detectron2.data import MetadataCatalog from detectron2.engine import DefaultPredictor import gradio as gr # Step 1: instantiate config cfg = get_cfg() add_vit_config(cfg) cfg.merge_from_file("cascade_dit_base.yml") # Step 2: add model weights URL to config cfg.MODEL.WEIGHTS = "https://layoutlm.blob.core.windows.net/dit/dit-fts/publaynet_dit-b_cascade.pth" # Step 3: set device cfg.MODEL.DEVICE = "cuda" if torch.cuda.is_available() else "cpu" # Step 4: define model predictor = DefaultPredictor(cfg) def get_bytes_shape_dtype(t): """ input: tensor output: 3 strings """ t_numpy = t.cpu().numpy() t_bytes = str(t_numpy.tobytes()) t_numpy_shape = str(t_numpy.shape) t_numpy_dtype = str(t_numpy.dtype) return t_bytes, t_numpy_shape, t_numpy_dtype def analyze_image(img): md = MetadataCatalog.get(cfg.DATASETS.TEST[0]) if cfg.DATASETS.TEST[0]=='icdar2019_test': md.set(thing_classes=["table"]) else: md.set(thing_classes=["text","title","list","table","figure"]) output = predictor(img)["instances"] v = Visualizer(img[:, :, ::-1], md, scale=1.0, instance_mode=ColorMode.SEGMENTATION) result = v.draw_instance_predictions(output.to("cpu")) result_image = result.get_image()[:, :, ::-1] num_instances = len(output) image_size = output._image_size fields = list(output.get_fields().keys()) for field in fields: if field == 'pred_boxes': boxes = output.get_fields()[field] boxes = boxes.tensor boxes_bytes, boxes_numpy_shape, boxes_numpy_dtype = get_bytes_shape_dtype(boxes) # boxes_recover = torch.from_numpy(np.frombuffer(boxes_bytes, dtype=boxes_numpy_dtype).reshape(boxes_numpy_shape)) elif field == 'scores': scores = output.get_fields()[field] scores_bytes, scores_numpy_shape, scores_numpy_dtype = get_bytes_shape_dtype(scores) # scores_recover = torch.from_numpy(np.frombuffer(scores_bytes, dtype=scores_numpy_dtype).reshape(scores_numpy_shape)) elif field == 'pred_classes': pred_classes = output.get_fields()[field] pred_classes_bytes, pred_classes_numpy_shape, pred_classes_numpy_dtype = get_bytes_shape_dtype(pred_classes) # pred_classes_recover = torch.from_numpy(np.frombuffer(pred_classes_bytes, dtype=pred_classes_numpy_dtype).reshape(pred_classes_numpy_shape)) return result_image, num_instances, image_size, boxes_bytes, boxes_numpy_shape, boxes_numpy_dtype, scores_bytes, scores_numpy_shape, scores_numpy_dtype, pred_classes_bytes, pred_classes_numpy_shape, pred_classes_numpy_dtype title = "Interactive demo: Document Layout Analysis with DiT" description = "Demo for Microsoft's DiT, the Document Image Transformer for state-of-the-art document understanding tasks. This particular model is fine-tuned on PubLayNet, a large dataset for document layout analysis (read more at the links below). To use it, simply upload an image or use the example image below and click 'Submit'. Results will show up in a few seconds. If you want to make the output bigger, right-click on it and select 'Open image in new tab'." article = "

Paper | Github Repo

| HuggingFace doc

" examples =[['publaynet_example.jpeg']] css = ".output-image, .input-image, .image-preview {height: 600px !important}" iface = gr.Interface(fn=analyze_image, inputs=gr.inputs.Image(type="numpy", label="document image"), outputs=[ gr.outputs.Image(type="numpy", label="annotated document"), gr.outputs.Textbox(label="num instances"), gr.outputs.Textbox(label="image size (h,w in pixels)"), gr.outputs.Textbox(label="boxes bytes"), gr.outputs.Textbox(label="boxes numpy shape"), gr.outputs.Textbox(label="boxes numpy dtype"), gr.outputs.Textbox(label="scores bytes"), gr.outputs.Textbox(label="scores numpy shape"), gr.outputs.Textbox(label="scores numpy dtype"), gr.outputs.Textbox(label="pred_classes bytes"), gr.outputs.Textbox(label="pred_classes numpy shape"), gr.outputs.Textbox(label="pred_classes numpy dtype") ], title=title, description=description, examples=examples, article=article, css=css ) iface.launch(debug=True, cache_examples=True, enable_queue=True)