import numpy as np import torch import torch.nn as nn from torchvision import models from scipy.optimize import root_scalar from scipy.special import betainc device = torch.device("cuda" if torch.cuda.is_available() else "cpu") def build_backbone(path, name='resnet50'): """ Builds a pretrained ResNet-50 backbone. """ model = getattr(models, name)(pretrained=False) model.head = nn.Identity() model.fc = nn.Identity() checkpoint = torch.load(path, map_location=device) state_dict = checkpoint for ckpt_key in ['state_dict', 'model_state_dict', 'teacher']: if ckpt_key in checkpoint: state_dict = checkpoint[ckpt_key] state_dict = {k.replace("module.", ""): v for k, v in state_dict.items()} state_dict = {k.replace("backbone.", ""): v for k, v in state_dict.items()} msg = model.load_state_dict(state_dict, strict=False) return model def get_linear_layer(weight, bias): """ Creates a layer that performs feature whitening or centering """ dim_out, dim_in = weight.shape layer = nn.Linear(dim_in, dim_out) layer.weight = nn.Parameter(weight) layer.bias = nn.Parameter(bias) return layer def load_normalization_layer(path): """ Loads the normalization layer from a checkpoint and returns the layer. """ checkpoint = torch.load(path, map_location=device) if 'whitening' in path or 'out' in path: D = checkpoint['weight'].shape[1] weight = torch.nn.Parameter(D*checkpoint['weight']) bias = torch.nn.Parameter(D*checkpoint['bias']) else: weight = checkpoint['weight'] bias = checkpoint['bias'] return get_linear_layer(weight, bias).to(device, non_blocking=True) class NormLayerWrapper(nn.Module): """ Wraps backbone model and normalization layer """ def __init__(self, backbone, head): super(NormLayerWrapper, self).__init__() backbone.eval(), head.eval() self.backbone = backbone self.head = head def forward(self, x): output = self.backbone(x) return self.head(output) def cosine_pvalue(c, d, k=1): """ Returns the probability that the absolute value of the projection between random unit vectors is higher than c Args: c: cosine value d: dimension of the features k: number of dimensions of the projection """ assert k>0 a = (d - k) / 2.0 b = k / 2.0 if c < 0: return 1.0 return betainc(a, b, 1 - c ** 2) def pvalue_angle(dim, k=1, angle=None, proba=None): def f(a): return cosine_pvalue(np.cos(a), dim, k) - proba a = root_scalar(f, x0=0.49*np.pi, bracket=[0, np.pi/2]) # a = fsolve(f, x0=0.49*np.pi)[0] return a.root