import gradio as gr import os, gc from huggingface_hub import hf_hub_download from pynvml import * # Flag to check if GPU is present HAS_GPU = False # Model title and context size limit ctx_limit = 2000 title = "RWKV-5-World-1B5-v2-20231025-ctx4096" model_file = "RWKV-5-World-1B5-v2-20231025-ctx4096" # Get the GPU count try: nvmlInit() GPU_COUNT = nvmlDeviceGetCount() if GPU_COUNT > 0: HAS_GPU = True gpu_h = nvmlDeviceGetHandleByIndex(0) except NVMLError as error: print(error) os.environ["RWKV_JIT_ON"] = '1' # Model strategy to use MODEL_STRAT = "cpu bf16" os.environ["RWKV_CUDA_ON"] = '0' # if '1' then use CUDA kernel for seq mode (much faster) # Switch to GPU mode if HAS_GPU: os.environ["RWKV_CUDA_ON"] = '1' MODEL_STRAT = "cuda bf16" # Load the model from rwkv.model import RWKV model_path = hf_hub_download(repo_id="BlinkDL/rwkv-5-world", filename=f"{model_file}.pth") model = RWKV(model=model_path, strategy=MODEL_STRAT) from rwkv.utils import PIPELINE pipeline = PIPELINE(model, "rwkv_vocab_v20230424") # Prompt generation def generate_prompt(instruction, input=""): instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n') input = input.strip().replace('\r\n','\n').replace('\n\n','\n') if input: return f"""Instruction: {instruction} Input: {input} Response:""" else: return f"""User: hi Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it. User: {instruction} Assistant:""" # Translation logic def translate(text, target_language): prompt = f"Translate the following English text to {target_language}: '{text}'" ctx = prompt.strip() all_tokens = [] out_last = 0 out_str = '' occurrence = {} state = None for i in range(ctx_limit): out, state = model.forward(pipeline.encode(ctx)[-ctx_limit:] if i == 0 else [token], state) token = pipeline.sample_logits(out) if token in [0]: # EOS token break all_tokens += [token] tmp = pipeline.decode(all_tokens[out_last:]) if '\ufffd' not in tmp: out_str += tmp yield out_str.strip() out_last = i + 1 del out del state # Clear GC gc.collect() if HAS_GPU == True : torch.cuda.empty_cache() yield out_str.strip() # Example data EXAMPLES = [ ["Hello, how are you?", "French"], ["Hello, how are you?", "Spanish"], ["Hello, how are you?", "Chinese"], ["Bonjour, comment ça va?", "English"], ["Hola, ¿cómo estás?", "English"], ["你好吗?", "English"], ["Guten Tag, wie geht es Ihnen?", "English"], ["Привет, как ты?", "English"], ["مرحبًا ، كيف حالك؟", "English"], ] # Gradio interface with gr.Blocks(title=title) as demo: gr.HTML(f"