import os, json, gc import time import torch import transformers import random from transformers import BitsAndBytesConfig#, AutoModelForCausalLM, AutoTokenizer from langchain.output_parsers import RetryWithErrorOutputParser from langchain.prompts import PromptTemplate from langchain_core.output_parsers import JsonOutputParser from langchain_experimental.llms import JsonFormer from langchain.tools import tool # from langchain_community.llms import CTransformers # from ctransformers import AutoModelForCausalLM, AutoConfig, Config from langchain_community.llms import LlamaCpp # from langchain.callbacks.manager import CallbackManager from langchain.callbacks.base import BaseCallbackHandler from huggingface_hub import hf_hub_download from vouchervision.utils_LLM import SystemLoadMonitor, count_tokens, save_individual_prompt from vouchervision.utils_LLM_JSON_validation import validate_and_align_JSON_keys_with_template from vouchervision.utils_taxonomy_WFO import validate_taxonomy_WFO from vouchervision.utils_geolocate_HERE import validate_coordinates_here from vouchervision.tool_wikipedia import WikipediaLinks class LocalCPUMistralHandler: RETRY_DELAY = 2 # Wait 2 seconds before retrying MAX_RETRIES = 5 # Maximum number of retries STARTING_TEMP = 0.1 TOKENIZER_NAME = None VENDOR = 'mistral' SEED = 2023 def __init__(self, logger, model_name, JSON_dict_structure): self.logger = logger self.monitor = SystemLoadMonitor(logger) self.has_GPU = torch.cuda.is_available() self.JSON_dict_structure = JSON_dict_structure self.model_file = None self.model_name = model_name # https://medium.com/@scholarly360/mistral-7b-complete-guide-on-colab-129fa5e9a04d self.model_name = "Mistral-7B-Instruct-v0.2-GGUF" #huggingface-cli download TheBloke/Mistral-7B-Instruct-v0.2-GGUF mistral-7b-instruct-v0.2.Q4_K_M.gguf --local-dir /home/brlab/.cache --local-dir-use-symlinks False self.model_id = f"TheBloke/{self.model_name}" name_parts = self.model_name.split('-') if self.model_name == "Mistral-7B-Instruct-v0.2-GGUF": self.model_file = 'mistral-7b-instruct-v0.2.Q4_K_M.gguf' self.model_path = hf_hub_download(repo_id=self.model_id, filename=self.model_file, repo_type="model") else: raise f"Unsupported GGUF model name" # self.model_id = f"mistralai/{self.model_name}" self.gpu_usage = {'max_load': 0, 'max_memory_usage': 0, 'monitoring': True} self.starting_temp = float(self.STARTING_TEMP) self.temp_increment = float(0.2) self.adjust_temp = self.starting_temp system_prompt = "You are a helpful AI assistant who answers queries with JSON objects and no explanations." template = """ [INST]{}[/INST] [INST]{}[/INST] """.format(system_prompt, "{query}") # Create a prompt from the template so we can use it with Langchain self.prompt = PromptTemplate(template=template, input_variables=["query"]) # Set up a parser self.parser = JsonOutputParser() self._set_config() # def _clear_VRAM(self): # # Clear CUDA cache if it's being used # if self.has_GPU: # self.local_model = None # del self.local_model # gc.collect() # Explicitly invoke garbage collector # torch.cuda.empty_cache() # else: # self.local_model = None # del self.local_model # gc.collect() # Explicitly invoke garbage collector def _set_config(self): # self._clear_VRAM() self.config = {'max_new_tokens': 1024, 'temperature': self.starting_temp, 'seed': self.SEED, 'top_p': 1, 'top_k': 40, 'n_ctx': 4096, 'do_sample': True, } self._build_model_chain_parser() def _adjust_config(self): new_temp = self.adjust_temp + self.temp_increment self.json_report.set_text(text_main=f'Incrementing temperature from {self.adjust_temp} to {new_temp}') self.logger.info(f'Incrementing temperature from {self.adjust_temp} to {new_temp}') self.adjust_temp += self.temp_increment self.config['temperature'] = self.adjust_temp def _reset_config(self): self.json_report.set_text(text_main=f'Resetting temperature from {self.adjust_temp} to {self.starting_temp}') self.logger.info(f'Resetting temperature from {self.adjust_temp} to {self.starting_temp}') self.adjust_temp = self.starting_temp self.config['temperature'] = self.starting_temp def _build_model_chain_parser(self): self.local_model = LlamaCpp( model_path=self.model_path, max_tokens=self.config.get('max_new_tokens'), top_p=self.config.get('top_p'), # callback_manager=callback_manager, # n_gpu_layers=1, # n_batch=512, n_ctx=self.config.get('n_ctx'), stop=["[INST]"], verbose=False, streaming=False, ) # Set up the retry parser with the runnable self.retry_parser = RetryWithErrorOutputParser.from_llm(parser=self.parser, llm=self.local_model, max_retries=self.MAX_RETRIES) # Create an llm chain with LLM and prompt self.chain = self.prompt | self.local_model def call_llm_local_cpu_MistralAI(self, prompt_template, json_report, paths): _____, ____, _, __, ___, json_file_path_wiki, txt_file_path_ind_prompt = paths self.json_report = json_report self.json_report.set_text(text_main=f'Sending request to {self.model_name}') self.monitor.start_monitoring_usage() nt_in = 0 nt_out = 0 ind = 0 while ind < self.MAX_RETRIES: ind += 1 try: ### BELOW IS BASIC MISTRAL CALL # mistral_prompt = f"[INST] {prompt_template} [/INST]" # results = self.local_model(mistral_prompt, temperature = 0.7, # repetition_penalty = 1.15, # max_new_tokens = 2048) # print(results) model_kwargs = {"temperature": self.adjust_temp} # Invoke the chain to generate prompt text results = self.chain.invoke({"query": prompt_template, "model_kwargs": model_kwargs}) # Use retry_parser to parse the response with retry logic output = self.retry_parser.parse_with_prompt(results, prompt_value=prompt_template) if output is None: self.logger.error(f'[Attempt {ind}] Failed to extract JSON from:\n{results}') self._adjust_config() else: nt_in = count_tokens(prompt_template, self.VENDOR, self.TOKENIZER_NAME) nt_out = count_tokens(results, self.VENDOR, self.TOKENIZER_NAME) output = validate_and_align_JSON_keys_with_template(output, self.JSON_dict_structure) if output is None: self.logger.error(f'[Attempt {ind}] Failed to extract JSON from:\n{results}') self._adjust_config() else: self.monitor.stop_inference_timer() # Starts tool timer too json_report.set_text(text_main=f'Working on WFO, Geolocation, Links') output, WFO_record = validate_taxonomy_WFO(output, replace_if_success_wfo=False) ###################################### make this configurable output, GEO_record = validate_coordinates_here(output, replace_if_success_geo=False) ###################################### make this configurable Wiki = WikipediaLinks(json_file_path_wiki) Wiki.gather_wikipedia_results(output) save_individual_prompt(Wiki.sanitize(prompt_template), txt_file_path_ind_prompt) self.logger.info(f"Formatted JSON:\n{json.dumps(output,indent=4)}") usage_report = self.monitor.stop_monitoring_report_usage() if self.adjust_temp != self.starting_temp: self._reset_config() json_report.set_text(text_main=f'LLM call successful') return output, nt_in, nt_out, WFO_record, GEO_record, usage_report except Exception as e: self.logger.error(f'{e}') self._adjust_config() self.logger.info(f"Failed to extract valid JSON after [{ind}] attempts") self.json_report.set_text(text_main=f'Failed to extract valid JSON after [{ind}] attempts') usage_report = self.monitor.stop_monitoring_report_usage() self._reset_config() json_report.set_text(text_main=f'LLM call failed') return None, nt_in, nt_out, None, None, usage_report