import torch import torch.nn as nn from torchsummary import summary # Load the model model = torch.load('D:/Dropbox/FieldPrism/fieldprism/yolov5/weights_nano/best.pt') summary(model['model'] , input_size=(3, 512, 512)) model.load_state_dict(checkpoint['model']) # Create a dummy input with the same dimensions expected by the model. # For a YOLO model, it might be something like (batch_size, 3, height, width) dummy_input = torch.randn(1, 3, 512, 512) # Get a prediction to inspect the shape with torch.no_grad(): output = model(dummy_input) # Print the output shape print("Output shape:", output.shape)