import torch import torch.nn as nn import math import torch.utils.model_zoo as model_zoo import torch.nn.functional as F __all__ = ['ResNet', 'resnet18_rep', 'resnet34_rep' ] def conv3x3(in_planes, out_planes, stride=1): "3x3 convolution with padding" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=True) def conv1x1(in_planes, out_planes, stride=1): """1x1 convolution""" return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=True) class conv_block(nn.Module): def __init__(self, in_planes, planes, mode, stride=1): super(conv_block, self).__init__() self.conv = conv3x3(in_planes, planes, stride) self.mode = mode if mode == 'parallel_adapters': self.adapter = conv1x1(in_planes, planes, stride) def re_init_conv(self): nn.init.kaiming_normal_(self.adapter.weight, mode='fan_out', nonlinearity='relu') return def forward(self, x): y = self.conv(x) if self.mode == 'parallel_adapters': y = y + self.adapter(x) return y class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, mode, stride=1, downsample=None): super(BasicBlock, self).__init__() self.conv1 = conv_block(inplanes, planes, mode, stride) self.norm1 = nn.BatchNorm2d(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv_block(planes, planes, mode) self.norm2 = nn.BatchNorm2d(planes) self.mode = mode self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.norm1(out) out = self.relu(out) out = self.conv2(out) out = self.norm2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class ResNet(nn.Module): def __init__(self, block, layers, num_classes=100, args = None): self.inplanes = 64 super(ResNet, self).__init__() assert args is not None self.mode = args["mode"] if 'cifar' in args["dataset"]: self.conv1 = nn.Sequential(nn.Conv2d(3, self.inplanes, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(self.inplanes), nn.ReLU(inplace=True)) print("use cifar") elif 'imagenet' in args["dataset"] or 'stanfordcar' in args["dataset"]: if args["init_cls"] == args["increment"]: self.conv1 = nn.Sequential( nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False), nn.BatchNorm2d(self.inplanes), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2, padding=1), ) else: # Following PODNET implmentation self.conv1 = nn.Sequential( nn.Conv2d(3, self.inplanes, kernel_size=3, stride=1, padding=1, bias=False), nn.BatchNorm2d(self.inplanes), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2, padding=1), ) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=2) self.feature = nn.AvgPool2d(4, stride=1) self.out_dim = 512 for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=True), ) layers = [] layers.append(block(self.inplanes, planes, self.mode, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes, self.mode)) return nn.Sequential(*layers) def switch(self, mode='normal'): for name, module in self.named_modules(): if hasattr(module, 'mode'): module.mode = mode def re_init_params(self): for name, module in self.named_modules(): if hasattr(module, 're_init_conv'): module.re_init_conv() def forward(self, x): x = self.conv1(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) dim = x.size()[-1] pool = nn.AvgPool2d(dim, stride=1) x = pool(x) x = x.view(x.size(0), -1) return {"features": x} def resnet18_rep(pretrained=False, **kwargs): """Constructs a ResNet-18 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs) if pretrained: pretrained_state_dict = model_zoo.load_url(model_urls['resnet18']) now_state_dict = model.state_dict() now_state_dict.update(pretrained_state_dict) model.load_state_dict(now_state_dict) return model def resnet34_rep(pretrained=False, **kwargs): """Constructs a ResNet-34 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(BasicBlock, [3, 4, 6, 3], **kwargs) if pretrained: pretrained_state_dict = model_zoo.load_url(model_urls['resnet34']) now_state_dict = model.state_dict() now_state_dict.update(pretrained_state_dict) model.load_state_dict(now_state_dict) return model