import gradio as gr import whisper from transformers import MarianMTModel, MarianTokenizer, AutoTokenizer, AutoModel, pipeline model_name = "Helsinki-NLP/opus-mt-tc-big-lt-en" #tokenizer = MarianTokenizer.from_pretrained(model_name) #translation_model = MarianMTModel.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained("Geotrend/bert-base-en-lt-cased") translation_model = AutoModel.from_pretrained("Geotrend/bert-base-en-lt-cased") model_name = "Aismantas/whisper-base-lithuanian" asr_pipeline = pipeline("automatic-speech-recognition", model=model_name) def transcribe(filepath): # Assuming the file is named 'audio.wav' # Run the transcription transcript = asr_pipeline(filepath) return transcript, tokenizer.decode(translation_model(**tokenizer(transcript['text'], return_tensors="pt", padding=True))[0], skip_special_tokens=True) demo = gr.Interface(fn=transcribe, inputs=[gr.Audio(type='filepath')], outputs=[gr.Text("transcript"), gr.Text("translation")]) demo.launch()