import gradio as gr import torch import spaces from transformers import pipeline from transformers import AutoModelForCausalLM, AutoTokenizer model_name = 'HuggingFaceTB/SmolLM-135M-Instruct' device = 'cuda' if torch.cuda.is_available() else 'cpu' tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name).to(device) @spaces.GPU(duration=120) def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" input_text = tokenizer.apply_chat_template(messages, tokenize=False) inputs = tokenizer.encode(input_text, return_tensors="pt").to(device) outputs = model.generate(inputs, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p, do_sample=True) return tokenizer.decode(outputs[0], skip_special_tokens=True) """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.6, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.92, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()