import gradio as gr import os img_to_text = gr.Interface.load("spaces/pharma/CLIP-Interrogator") stable_diffusion = gr.Blocks.load(name="spaces/stabilityai/stable-diffusion") def get_images(prompt): gallery_dir = stable_diffusion(prompt, fn_index=2) return [os.path.join(gallery_dir, image) for image in os.listdir(gallery_dir)] def get_prompts(uploaded_image): return img_to_text(uploaded_image) with gr.Blocks() as demo: gr.Markdown( """ ## Stable Diffusion Perception 🎆🌌 Input an image and see how the model perceives it! 👀 """ ) with gr.Row(): with gr.Column(): input_img = gr.Image(type="filepath") with gr.Row(): see_prompts = gr.Button("Check how your image prompts your model!", elem_id="check_btn_1") with gr.Column(): img2text_output = gr.Textbox( label="Convert your image to text!", lines=4, elem_id="translated" ) with gr.Row(): diffuse_btn = gr.Button(value="Diffuse it!", elem_id="diffuse_btn") with gr.Column(): sd_output = gr.Gallery().style(grid=2, height="auto") def translate_directly(img): images = get_images(get_prompts(img)) return images see_prompts.click(img_to_text, inputs = input_img, outputs = [ img2text_output ]) diffuse_btn.click(get_images, inputs = [ img2text_output ], outputs = sd_output ) demo.launch()