import os os.system('pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu') import gradio as gr import numpy as np from transformers import AutoModelForTokenClassification from datasets.features import ClassLabel from transformers import AutoProcessor from datasets import Features, Sequence, ClassLabel, Value, Array2D, Array3D import torch from datasets import load_metric from transformers import LayoutLMv3ForTokenClassification from transformers.data.data_collator import default_data_collator from transformers import AutoModelForTokenClassification from datasets import load_dataset from PIL import Image, ImageDraw, ImageFont processor = AutoProcessor.from_pretrained("microsoft/layoutlmv3-base", apply_ocr=True) model = AutoModelForTokenClassification.from_pretrained("Theivaprakasham/layoutlmv3-finetuned-invoice") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Load image example dataset = load_dataset("darentang/generated", split="test") Image.open(dataset[2]["image_path"]).convert("RGB").save("example1.png") Image.open(dataset[1]["image_path"]).convert("RGB").save("example2.png") Image.open(dataset[0]["image_path"]).convert("RGB").save("example3.png") # Define id2label, label2color labels = dataset.features['ner_tags'].feature.names id2label = {v: k for v, k in enumerate(labels)} label2color = { "B-ABN": 'blue', "B-BILLER": 'blue', "B-BILLER_ADDRESS": 'green', "B-BILLER_POST_CODE": 'orange', "B-DUE_DATE": "blue", "B-GST": 'green', "B-INVOICE_DATE": 'violet', "B-INVOICE_NUMBER": 'orange', "B-SUBTOTAL": 'green', "B-TOTAL": 'blue', "I-BILLER_ADDRESS": 'blue', "O": 'orange' } def unnormalize_box(bbox, width, height): return [ width * (box / 1000) for box in bbox ] def iob_to_label(label): return label def process_image(image): width, height = image.size # Encode image encoding = processor(image, truncation=True, padding="max_length", max_length=512, return_tensors="pt") input_ids = encoding.input_ids.to(device) attention_mask = encoding.attention_mask.to(device) bbox = encoding.bbox[0].tolist() bbox = torch.tensor(bbox, dtype=torch.long).unsqueeze(0).to(device) # Inference with torch.no_grad(): outputs = model(input_ids=input_ids, bbox=bbox, attention_mask=attention_mask) predicted_labels = outputs.logits.argmax(dim=2).squeeze().tolist() # Extract content from boxes extracted_content = {} for idx, box in enumerate(bbox[0]): predicted_label = id2label[predicted_labels[idx]] box_width = np.array(box)[2] - np.array(box)[0] box_height = np.array(box)[3] - np.array(box)[1] normalized_box = [int(coord) for coord in unnormalize_box(box, width, height)] extracted_content[predicted_label] = image.crop(normalized_box).copy() # Draw predictions over the image draw = ImageDraw.Draw(image) font = ImageFont.load_default() for prediction, box in zip(predicted_labels, bbox[0]): predicted_label = iob_to_label(id2label[prediction]) box_width = np.array(box)[2] - np.array(box)[0] box_height = np.array(box)[3] - np.array(box)[1] normalized_box = [int(coord) for coord in unnormalize_box(box, width, height)] draw.rectangle(normalized_box, outline=label2color[predicted_label]) draw.text((normalized_box[0] + 10, normalized_box[1] - 10), text=predicted_label, fill=label2color[predicted_label], font=font) return image, extracted_content title = "Invoice Information Extraction using LayoutLMv3 Model" description = "This model uses Microsoft's LayoutLMv3 trained on an Invoice Dataset to predict information such as Biller Name, Biller Address, Biller Post Code, Due Date, GST, Invoice Date, Invoice Number, Subtotal, and Total. To use it, simply upload an image or use the example images below. The results will be shown with annotated images and extracted information." article = "References
[1] Y. Xu et al., 'LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking.' 2022. [Paper Link](https://arxiv.org/abs/2204.08387)
[2] [LayoutLMv3 training and inference](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/LayoutLMv3)" examples = [['example1.png'], ['example2.png'], ['example3.png']] css = """.output_image, .input_image {height: 600px !important}""" iface = gr.Interface(fn=process_image, inputs=gr.inputs.Image(type="pil"), outputs=[gr.outputs.Image(type="pil", label="Annotated Image"), gr.outputs.JSON(label="Extracted Content")], title=title, description=description, article=article, examples=examples, css=css, analytics_enabled=True, enable_queue=True) iface.launch(inline=False, share=False, debug=False)