import os import joblib import gradio as gr import pandas as pd price_predictor = joblib.load('model-v1.joblib') carat_input = gr.Number(label="Carat") shape_input = gr.Dropdown( ['Round', 'Princess', 'Emerald', 'Asscher', 'Cushion', 'Radiant', 'Oval', 'Pear', 'Marquise'], label="Shape" ) cut_input = gr.Dropdown( ['Ideal', 'Premium', 'Very Good', 'Good', 'Fair'], label="Cut" ) color_input = gr.Dropdown( ['D', 'E', 'F', 'G', 'H', 'I', 'J'], label="Color" ) clarity_input = gr.Dropdown( ['IF', 'VVS1', 'VVS2', 'VS1', 'VS2', 'SI1', 'SI2', 'I1'], label="Clarity" ) report_input = gr.Dropdown(['GIA', 'IGI', 'HRD', 'AGS'], label="Report") type_input = gr.Dropdown(['Natural', 'Lab Grown'], label="Type") hf_token = os.environ["HF_TOKEN"] hf_writer = gr.HuggingFaceDatasetSaver(hf_token, "diamond-price-predictor-logs") model_output = gr.Label(label="Predicted Price (USD)") def predict_price(carat, shape, cut, color, clarity, report, type): sample = { 'carat': carat, 'shape': shape, 'cut': cut, 'color': color, 'clarity': clarity, 'report': report, 'type': type, } data_point = pd.DataFrame([sample]) prediction = price_predictor.predict(data_point).tolist() return prediction[0] demo = gr.Interface( fn=predict_price, inputs=[carat_input, shape_input, cut_input, color_input, clarity_input, report_input, type_input], outputs=model_output, theme=gr.themes.Soft(), title="Diamond Price Predictor", description="This API allows you to predict the price of a diamond given its attributes", allow_flagging="auto", flagging_callback=hf_writer, concurrency_limit=8 ) demo.queue() demo.launch(share=False)