import os import gradio as gr from langchain.agents.agent_types import AgentType from langchain_experimental.agents.agent_toolkits import create_pandas_dataframe_agent from langchain_openai import AzureChatOpenAI from sklearn.datasets import fetch_openml gpt35 = AzureChatOpenAI( api_key=os.environ["AZURE_OPENAI_KEY"], azure_endpoint=os.environ["AZURE_OPENAI_ENDPOINT"], api_version="2023-05-15", deployment_name="gpt-35-turbo", temperature=0 ) bank_data, _ = fetch_openml(data_id=43718, return_X_y=True, parser="auto") pandas_agent = create_pandas_dataframe_agent( llm=gpt35, df=bank_data, verbose=False, agent_type=AgentType.OPENAI_FUNCTIONS, ) def predict(user_input): try: response = pandas_agent.invoke(user_input) prediction = response['output'] except Exception as e: prediction = e return prediction textbox = gr.Textbox(placeholder="Enter your query here", lines=6) schema = """ The schema of the table you can query on is presented below: | Column | Type | |-----------|--------| | age | int | | job | str | | marital | str | | education | str | | default | yes/no | | balance | int | | housing | yes/no | | loan | yes/no | | contact | str | | day | int | | month | str | | duration | int | | campaign | int | | pdays | int | | poutcome | str | | deposit | yes/no | """ interface = gr.Interface( inputs=textbox, fn=predict, outputs="text", title="Query BFSI customer information", description="This web API presents an interface to ask questions on customer information stored in a database.", article=schema, examples=[["What is the average balance maintained by our customers?", ""], ["How many customers have subscribed to a term deposit?", ""], ["How many customers have defaulted on loans?", ""], ["Do customers who default maintain a low balance?", ""] ] ) with gr.Blocks() as demo: interface.launch() demo.queue(concurrency_count=16) demo.launch()