Spaces:
Running
Running
| import math | |
| import random | |
| import hashlib | |
| import logging | |
| from enum import Enum | |
| import cv2 | |
| import numpy as np | |
| from saicinpainting.evaluation.masks.mask import SegmentationMask | |
| from saicinpainting.utils import LinearRamp | |
| LOGGER = logging.getLogger(__name__) | |
| class DrawMethod(Enum): | |
| LINE = 'line' | |
| CIRCLE = 'circle' | |
| SQUARE = 'square' | |
| def make_random_irregular_mask(shape, max_angle=4, max_len=60, max_width=20, min_times=0, max_times=10, | |
| draw_method=DrawMethod.LINE): | |
| draw_method = DrawMethod(draw_method) | |
| height, width = shape | |
| mask = np.zeros((height, width), np.float32) | |
| times = np.random.randint(min_times, max_times + 1) | |
| for i in range(times): | |
| start_x = np.random.randint(width) | |
| start_y = np.random.randint(height) | |
| for j in range(1 + np.random.randint(5)): | |
| angle = 0.01 + np.random.randint(max_angle) | |
| if i % 2 == 0: | |
| angle = 2 * 3.1415926 - angle | |
| length = 10 + np.random.randint(max_len) | |
| brush_w = 5 + np.random.randint(max_width) | |
| end_x = np.clip((start_x + length * np.sin(angle)).astype(np.int32), 0, width) | |
| end_y = np.clip((start_y + length * np.cos(angle)).astype(np.int32), 0, height) | |
| if draw_method == DrawMethod.LINE: | |
| cv2.line(mask, (start_x, start_y), (end_x, end_y), 1.0, brush_w) | |
| elif draw_method == DrawMethod.CIRCLE: | |
| cv2.circle(mask, (start_x, start_y), radius=brush_w, color=1., thickness=-1) | |
| elif draw_method == DrawMethod.SQUARE: | |
| radius = brush_w // 2 | |
| mask[start_y - radius:start_y + radius, start_x - radius:start_x + radius] = 1 | |
| start_x, start_y = end_x, end_y | |
| return mask[None, ...] | |
| class RandomIrregularMaskGenerator: | |
| def __init__(self, max_angle=4, max_len=60, max_width=20, min_times=0, max_times=10, ramp_kwargs=None, | |
| draw_method=DrawMethod.LINE): | |
| self.max_angle = max_angle | |
| self.max_len = max_len | |
| self.max_width = max_width | |
| self.min_times = min_times | |
| self.max_times = max_times | |
| self.draw_method = draw_method | |
| self.ramp = LinearRamp(**ramp_kwargs) if ramp_kwargs is not None else None | |
| def __call__(self, img, iter_i=None, raw_image=None): | |
| coef = self.ramp(iter_i) if (self.ramp is not None) and (iter_i is not None) else 1 | |
| cur_max_len = int(max(1, self.max_len * coef)) | |
| cur_max_width = int(max(1, self.max_width * coef)) | |
| cur_max_times = int(self.min_times + 1 + (self.max_times - self.min_times) * coef) | |
| return make_random_irregular_mask(img.shape[1:], max_angle=self.max_angle, max_len=cur_max_len, | |
| max_width=cur_max_width, min_times=self.min_times, max_times=cur_max_times, | |
| draw_method=self.draw_method) | |
| def make_random_rectangle_mask(shape, margin=10, bbox_min_size=30, bbox_max_size=100, min_times=0, max_times=3): | |
| height, width = shape | |
| mask = np.zeros((height, width), np.float32) | |
| bbox_max_size = min(bbox_max_size, height - margin * 2, width - margin * 2) | |
| times = np.random.randint(min_times, max_times + 1) | |
| for i in range(times): | |
| box_width = np.random.randint(bbox_min_size, bbox_max_size) | |
| box_height = np.random.randint(bbox_min_size, bbox_max_size) | |
| start_x = np.random.randint(margin, width - margin - box_width + 1) | |
| start_y = np.random.randint(margin, height - margin - box_height + 1) | |
| mask[start_y:start_y + box_height, start_x:start_x + box_width] = 1 | |
| return mask[None, ...] | |
| class RandomRectangleMaskGenerator: | |
| def __init__(self, margin=10, bbox_min_size=30, bbox_max_size=100, min_times=0, max_times=3, ramp_kwargs=None): | |
| self.margin = margin | |
| self.bbox_min_size = bbox_min_size | |
| self.bbox_max_size = bbox_max_size | |
| self.min_times = min_times | |
| self.max_times = max_times | |
| self.ramp = LinearRamp(**ramp_kwargs) if ramp_kwargs is not None else None | |
| def __call__(self, img, iter_i=None, raw_image=None): | |
| coef = self.ramp(iter_i) if (self.ramp is not None) and (iter_i is not None) else 1 | |
| cur_bbox_max_size = int(self.bbox_min_size + 1 + (self.bbox_max_size - self.bbox_min_size) * coef) | |
| cur_max_times = int(self.min_times + (self.max_times - self.min_times) * coef) | |
| return make_random_rectangle_mask(img.shape[1:], margin=self.margin, bbox_min_size=self.bbox_min_size, | |
| bbox_max_size=cur_bbox_max_size, min_times=self.min_times, | |
| max_times=cur_max_times) | |
| class RandomSegmentationMaskGenerator: | |
| def __init__(self, **kwargs): | |
| self.impl = None # will be instantiated in first call (effectively in subprocess) | |
| self.kwargs = kwargs | |
| def __call__(self, img, iter_i=None, raw_image=None): | |
| if self.impl is None: | |
| self.impl = SegmentationMask(**self.kwargs) | |
| masks = self.impl.get_masks(np.transpose(img, (1, 2, 0))) | |
| masks = [m for m in masks if len(np.unique(m)) > 1] | |
| return np.random.choice(masks) | |
| def make_random_superres_mask(shape, min_step=2, max_step=4, min_width=1, max_width=3): | |
| height, width = shape | |
| mask = np.zeros((height, width), np.float32) | |
| step_x = np.random.randint(min_step, max_step + 1) | |
| width_x = np.random.randint(min_width, min(step_x, max_width + 1)) | |
| offset_x = np.random.randint(0, step_x) | |
| step_y = np.random.randint(min_step, max_step + 1) | |
| width_y = np.random.randint(min_width, min(step_y, max_width + 1)) | |
| offset_y = np.random.randint(0, step_y) | |
| for dy in range(width_y): | |
| mask[offset_y + dy::step_y] = 1 | |
| for dx in range(width_x): | |
| mask[:, offset_x + dx::step_x] = 1 | |
| return mask[None, ...] | |
| class RandomSuperresMaskGenerator: | |
| def __init__(self, **kwargs): | |
| self.kwargs = kwargs | |
| def __call__(self, img, iter_i=None): | |
| return make_random_superres_mask(img.shape[1:], **self.kwargs) | |
| class DumbAreaMaskGenerator: | |
| min_ratio = 0.1 | |
| max_ratio = 0.35 | |
| default_ratio = 0.225 | |
| def __init__(self, is_training): | |
| #Parameters: | |
| # is_training(bool): If true - random rectangular mask, if false - central square mask | |
| self.is_training = is_training | |
| def _random_vector(self, dimension): | |
| if self.is_training: | |
| lower_limit = math.sqrt(self.min_ratio) | |
| upper_limit = math.sqrt(self.max_ratio) | |
| mask_side = round((random.random() * (upper_limit - lower_limit) + lower_limit) * dimension) | |
| u = random.randint(0, dimension-mask_side-1) | |
| v = u+mask_side | |
| else: | |
| margin = (math.sqrt(self.default_ratio) / 2) * dimension | |
| u = round(dimension/2 - margin) | |
| v = round(dimension/2 + margin) | |
| return u, v | |
| def __call__(self, img, iter_i=None, raw_image=None): | |
| c, height, width = img.shape | |
| mask = np.zeros((height, width), np.float32) | |
| x1, x2 = self._random_vector(width) | |
| y1, y2 = self._random_vector(height) | |
| mask[x1:x2, y1:y2] = 1 | |
| return mask[None, ...] | |
| class OutpaintingMaskGenerator: | |
| def __init__(self, min_padding_percent:float=0.04, max_padding_percent:int=0.25, left_padding_prob:float=0.5, top_padding_prob:float=0.5, | |
| right_padding_prob:float=0.5, bottom_padding_prob:float=0.5, is_fixed_randomness:bool=False): | |
| """ | |
| is_fixed_randomness - get identical paddings for the same image if args are the same | |
| """ | |
| self.min_padding_percent = min_padding_percent | |
| self.max_padding_percent = max_padding_percent | |
| self.probs = [left_padding_prob, top_padding_prob, right_padding_prob, bottom_padding_prob] | |
| self.is_fixed_randomness = is_fixed_randomness | |
| assert self.min_padding_percent <= self.max_padding_percent | |
| assert self.max_padding_percent > 0 | |
| assert len([x for x in [self.min_padding_percent, self.max_padding_percent] if (x>=0 and x<=1)]) == 2, f"Padding percentage should be in [0,1]" | |
| assert sum(self.probs) > 0, f"At least one of the padding probs should be greater than 0 - {self.probs}" | |
| assert len([x for x in self.probs if (x >= 0) and (x <= 1)]) == 4, f"At least one of padding probs is not in [0,1] - {self.probs}" | |
| if len([x for x in self.probs if x > 0]) == 1: | |
| LOGGER.warning(f"Only one padding prob is greater than zero - {self.probs}. That means that the outpainting masks will be always on the same side") | |
| def apply_padding(self, mask, coord): | |
| mask[int(coord[0][0]*self.img_h):int(coord[1][0]*self.img_h), | |
| int(coord[0][1]*self.img_w):int(coord[1][1]*self.img_w)] = 1 | |
| return mask | |
| def get_padding(self, size): | |
| n1 = int(self.min_padding_percent*size) | |
| n2 = int(self.max_padding_percent*size) | |
| return self.rnd.randint(n1, n2) / size | |
| def _img2rs(img): | |
| arr = np.ascontiguousarray(img.astype(np.uint8)) | |
| str_hash = hashlib.sha1(arr).hexdigest() | |
| res = hash(str_hash)%(2**32) | |
| return res | |
| def __call__(self, img, iter_i=None, raw_image=None): | |
| c, self.img_h, self.img_w = img.shape | |
| mask = np.zeros((self.img_h, self.img_w), np.float32) | |
| at_least_one_mask_applied = False | |
| if self.is_fixed_randomness: | |
| assert raw_image is not None, f"Cant calculate hash on raw_image=None" | |
| rs = self._img2rs(raw_image) | |
| self.rnd = np.random.RandomState(rs) | |
| else: | |
| self.rnd = np.random | |
| coords = [[ | |
| (0,0), | |
| (1,self.get_padding(size=self.img_h)) | |
| ], | |
| [ | |
| (0,0), | |
| (self.get_padding(size=self.img_w),1) | |
| ], | |
| [ | |
| (0,1-self.get_padding(size=self.img_h)), | |
| (1,1) | |
| ], | |
| [ | |
| (1-self.get_padding(size=self.img_w),0), | |
| (1,1) | |
| ]] | |
| for pp, coord in zip(self.probs, coords): | |
| if self.rnd.random() < pp: | |
| at_least_one_mask_applied = True | |
| mask = self.apply_padding(mask=mask, coord=coord) | |
| if not at_least_one_mask_applied: | |
| idx = self.rnd.choice(range(len(coords)), p=np.array(self.probs)/sum(self.probs)) | |
| mask = self.apply_padding(mask=mask, coord=coords[idx]) | |
| return mask[None, ...] | |
| class MixedMaskGenerator: | |
| def __init__(self, irregular_proba=1/3, irregular_kwargs=None, | |
| box_proba=1/3, box_kwargs=None, | |
| segm_proba=1/3, segm_kwargs=None, | |
| squares_proba=0, squares_kwargs=None, | |
| superres_proba=0, superres_kwargs=None, | |
| outpainting_proba=0, outpainting_kwargs=None, | |
| invert_proba=0): | |
| self.probas = [] | |
| self.gens = [] | |
| if irregular_proba > 0: | |
| self.probas.append(irregular_proba) | |
| if irregular_kwargs is None: | |
| irregular_kwargs = {} | |
| else: | |
| irregular_kwargs = dict(irregular_kwargs) | |
| irregular_kwargs['draw_method'] = DrawMethod.LINE | |
| self.gens.append(RandomIrregularMaskGenerator(**irregular_kwargs)) | |
| if box_proba > 0: | |
| self.probas.append(box_proba) | |
| if box_kwargs is None: | |
| box_kwargs = {} | |
| self.gens.append(RandomRectangleMaskGenerator(**box_kwargs)) | |
| if segm_proba > 0: | |
| self.probas.append(segm_proba) | |
| if segm_kwargs is None: | |
| segm_kwargs = {} | |
| self.gens.append(RandomSegmentationMaskGenerator(**segm_kwargs)) | |
| if squares_proba > 0: | |
| self.probas.append(squares_proba) | |
| if squares_kwargs is None: | |
| squares_kwargs = {} | |
| else: | |
| squares_kwargs = dict(squares_kwargs) | |
| squares_kwargs['draw_method'] = DrawMethod.SQUARE | |
| self.gens.append(RandomIrregularMaskGenerator(**squares_kwargs)) | |
| if superres_proba > 0: | |
| self.probas.append(superres_proba) | |
| if superres_kwargs is None: | |
| superres_kwargs = {} | |
| self.gens.append(RandomSuperresMaskGenerator(**superres_kwargs)) | |
| if outpainting_proba > 0: | |
| self.probas.append(outpainting_proba) | |
| if outpainting_kwargs is None: | |
| outpainting_kwargs = {} | |
| self.gens.append(OutpaintingMaskGenerator(**outpainting_kwargs)) | |
| self.probas = np.array(self.probas, dtype='float32') | |
| self.probas /= self.probas.sum() | |
| self.invert_proba = invert_proba | |
| def __call__(self, img, iter_i=None, raw_image=None): | |
| kind = np.random.choice(len(self.probas), p=self.probas) | |
| gen = self.gens[kind] | |
| result = gen(img, iter_i=iter_i, raw_image=raw_image) | |
| if self.invert_proba > 0 and random.random() < self.invert_proba: | |
| result = 1 - result | |
| return result | |
| def get_mask_generator(kind, kwargs): | |
| if kind is None: | |
| kind = "mixed" | |
| if kwargs is None: | |
| kwargs = {} | |
| if kind == "mixed": | |
| cl = MixedMaskGenerator | |
| elif kind == "outpainting": | |
| cl = OutpaintingMaskGenerator | |
| elif kind == "dumb": | |
| cl = DumbAreaMaskGenerator | |
| else: | |
| raise NotImplementedError(f"No such generator kind = {kind}") | |
| return cl(**kwargs) | |