import torch import torch.nn as nn import torch.nn.functional as F import torchvision.transforms as transforms import kornia from PIL import Image import numpy as np import albumentations as A from albumentations.pytorch import ToTensorV2 device = 'cuda' if torch.cuda.is_available() else 'cpu' # Define model class BlurUpSample(nn.Module): def __init__(self, c): super(BlurUpSample, self).__init__() self.blurpool = kornia.filters.GaussianBlur2d((3, 3), (1.5, 1.5)) self.upsample = nn.Upsample(scale_factor=(2, 2), mode='bilinear', align_corners=False) def forward(self, x): x = self.blurpool(x) x = self.upsample(x) return x class DownLayer(nn.Module): def __init__(self, c_in, c_out): super(DownLayer, self).__init__() self.maxblurpool = kornia.filters.MaxBlurPool2D(kernel_size=3) self.conv1 = nn.Conv2d(c_in, c_out, kernel_size=3, stride=1, padding=1) self.bn1 = nn.BatchNorm2d(c_out) self.leakyrelu = nn.LeakyReLU(inplace=True) self.conv2 = nn.Conv2d(c_out, c_out, kernel_size=3, stride=1, padding=1) self.bn2 = nn.BatchNorm2d(c_out) def forward(self, x): x = self.maxblurpool(x) x = self.conv1(x) x = self.bn1(x) x = self.leakyrelu(x) x = self.conv2(x) x = self.bn2(x) x = self.leakyrelu(x) return x class UpLayer(nn.Module): def __init__(self, c_in, c_out): super(UpLayer, self).__init__() self.upsample = BlurUpSample(c_in) self.conv1 = nn.Conv2d(c_in+ c_out, c_out, kernel_size=3, stride=1, padding=1) self.bn1 = nn.BatchNorm2d(c_out) self.leakyrelu = nn.LeakyReLU(inplace=True) self.conv2 = nn.Conv2d(c_out, c_out, kernel_size=3, stride=1, padding=1) self.bn2 = nn.BatchNorm2d(c_out) def forward(self, x, skip_x): x = self.upsample(x) dh = skip_x.size(2) - x.size(2) dw = skip_x.size(3) - x.size(3) x = F.pad(x, (dw // 2, dw - dw // 2, dh // 2, dh - dh // 2)) x = torch.cat([x, skip_x], dim=1) x = self.conv1(x) x = self.bn1(x) x = self.leakyrelu(x) x = self.conv2(x) x = self.bn2(x) x = self.leakyrelu(x) return x class Generator(nn.Module): def __init__(self): super(Generator, self).__init__() self.conv1 = nn.Conv2d(5, 64, kernel_size=3, stride=1, padding=1) self.conv2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1) self.batchnorm1 = nn.BatchNorm2d(64) self.leakyrelu = nn.LeakyReLU(inplace=True) self.downlayer1 = DownLayer(64, 128) self.downlayer2 = DownLayer(128, 256) self.downlayer3 = DownLayer(256, 512) self.downlayer4 = DownLayer(512, 1024) self.uplayer1 = UpLayer(1024, 512) self.uplayer2 = UpLayer(512, 256) self.uplayer3 = UpLayer(256, 128) self.uplayer4 = UpLayer(128, 64) self.conv3 = nn.Conv2d(64, 3, kernel_size=1, stride=1, padding=0) def forward(self, x): #print(f'Input Shape: {x.shape}') x1 = self.conv1(x) x1 = self.batchnorm1(x1) x1 = self.leakyrelu(x1) x1 = self.conv2(x1) x1 = self.batchnorm1(x1) x1 = self.leakyrelu(x1) #print(f'Processed Input Shape: {x.shape}') x2 = self.downlayer1(x1) x3 = self.downlayer2(x2) x4 = self.downlayer3(x3) x5 = self.downlayer4(x4) #print(f'Done Downlayering... Shape: {x5.shape}') x = self.uplayer1(x5, x4) x = self.uplayer2(x, x3) x = self.uplayer3(x, x2) x = self.uplayer4(x, x1) x = self.conv3(x) #print(f'Output Shape: {x.shape}') return x transform_resize = A.Compose([ A.Resize(512, 512), ToTensorV2(), ]) # Load model generator_model = Generator() generator_model.load_state_dict(torch.load('large-aging-model.h5',map_location=torch.device(device))) generator_model.to(device) #generator_model.eval() print("") def age_filter(image, input_age, output_age): resized_image = image.resize((512,512)) input_image = transform_resize(image=np.array(image))['image']/255 age_map1 = torch.full((1, 512, 512), input_age / 100) age_map2 = torch.full((1, 512, 512), output_age / 100) input_tensor = torch.cat((input_image, age_map1,age_map2), dim=0) with torch.no_grad(): model_output = generator_model(input_tensor.unsqueeze(0).to(device)) np_test = np.array(image) new_image = (model_output.squeeze(0).cpu().permute(1,2,0).numpy()*255+np.array(resized_image)).astype('uint8') sample_image = np.array(Image.fromarray(new_image).resize((np_test.shape[1],np_test.shape[0]))).astype('uint8') return sample_image import gradio as gr from torchvision.transforms.functional import crop def crop_and_process_image(input_img,input_age,output_ag): # Crop the image using the provided crop tool coordinates processed_image = Image.fromarray(input_img) # Modify this line to preprocess the cropped image # Run the processed image through your model output = age_filter(processed_image, input_age, output_ag) # Return the output return output input_image = gr.Image(label="Input Image", interactive=True) output_image = gr.Image(label="Output Image", type="pil") input_age = gr.Slider(label="Current Age",minimum=18,maximum=80) output_age = gr.Slider(label="Desired Age",minimum=18,maximum=80) def process_image(input_img,input_age,output_age): output = crop_and_process_image(input_img,input_age,output_age) output = Image.fromarray(output) return output description="Enter age of input image and desired age. Crop out background. Better results on high resolution (512x512 face). To avoid background/hair artifacts, use with a face parser." # Create the Gradio interface gr.Interface(fn=process_image, inputs=[input_image,input_age,output_age], outputs=output_image,description=description, title="Age Transformation",cache_examples = True, examples=[["example_image_input2.jpeg",30,65],["example_image_output.png",20,40]]).launch()