from fastai.vision.all import * import gradio as gr learn = load_learner('export.pkl') categories = ('broccoli', 'marijuana') def classify_image(img): pred, idx, probs = learn.predict(img) return dict(zip(categories, map(float, probs))) image = gr.inputs.Image(shape=(192, 192)) label = gr.outputs.Label() ß examples = ['broccoli.jpeg', 'marijuana.jpeg', 'brocc 2.jpeg', 'weed 2.jpeg', 'brocc 3.jpeg', 'weed 3.jpeg', 'weed 4.jpeg'] intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples) intf.launch(inline=False)