from fastai.vision.all import * import gradio as gr learn = load_learner('bridges.pkl') categories = ('Arch','Cantilever','Suspension') def classify_image(img): pred, idx, probs = learn.predict(img) return dict(zip(categories, map(float, probs))) image = gr.inputs.Image(shape=(192, 192)) label = gr.outputs.Label() examples = ['arch bridge 1.jpeg', 'arch bridge 2.jpeg','cantilever bridge 1.jpeg','cantilever bridge 2.jpeg','suspension bridge 1.jpeg','suspension bridge 2.webp'] intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples) intf.launch(inline=False)