import gradio as gr from transformers import pipeline import librosa pipe = pipeline("automatic-speech-recognition", model="model") def transcribe(audiofile): audio, sr = librosa.load(audiofile, sr=None) if sr != 16_000: audio = librosa.resample(audio, orig_sr=sr, target_sr=16_000) text = pipe(audio, chunk_length_s=25, stride_length_s=(5, 5))['text'] return text demo = gr.Interface( fn=transcribe, inputs=gr.Audio(type='filepath'), outputs=gr.Textbox(show_copy_button=True) ) if __name__ == '__main__': demo.launch()