pawlo2013 commited on
Commit
4326ce4
·
1 Parent(s): 46004f7

added requirements

Browse files
.history/app_20240617181401.py ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import gradio as gr
3
+ from PIL import Image
4
+ import torch
5
+ from transformers import ViTForImageClassification, ViTImageProcessor
6
+ from datasets import load_dataset
7
+
8
+ # Model and processor configuration
9
+ model_name_or_path = "google/vit-base-patch16-224-in21k"
10
+ processor = ViTImageProcessor.from_pretrained(model_name_or_path)
11
+
12
+ # Load dataset (adjust dataset_path accordingly)
13
+ dataset_path = "pawlo2013/chest_xray"
14
+ train_dataset = load_dataset(dataset_path, split="train")
15
+ class_names = train_dataset.features["label"].names
16
+
17
+ # Load ViT model
18
+ model = ViTForImageClassification.from_pretrained(
19
+ "./models",
20
+ num_labels=len(class_names),
21
+ id2label={str(i): label for i, label in enumerate(class_names)},
22
+ label2id={label: i for i, label in enumerate(class_names)},
23
+ )
24
+
25
+ # Set model to evaluation mode
26
+ model.eval()
27
+
28
+
29
+ # Define the classification function
30
+ def classify_image(img_path):
31
+ img = Image.open(img_path)
32
+ processed_input = processor(images=img, return_tensors="pt")
33
+ with torch.no_grad():
34
+ outputs = model(**processed_input)
35
+ logits = outputs.logits
36
+ probabilities = torch.softmax(logits, dim=1)[0].tolist()
37
+
38
+ result = {class_name: prob for class_name, prob in zip(class_names, probabilities)}
39
+ filename = os.path.basename(img_path).split(".")[0]
40
+ return {"filename": filename, "probabilities": result}
41
+
42
+
43
+ def format_output(output):
44
+ return f"{output['filename']}", output["probabilities"]
45
+
46
+
47
+ # Function to load examples from a folder
48
+ def load_examples_from_folder(folder_path):
49
+ examples = []
50
+ for file in os.listdir(folder_path):
51
+ if file.endswith((".png", ".jpg", ".jpeg")):
52
+ examples.append(os.path.join(folder_path, file))
53
+ return examples
54
+
55
+
56
+ # Define the path to the examples folder
57
+ examples_folder = "./examples"
58
+ examples = load_examples_from_folder(examples_folder)
59
+
60
+ # Create the Gradio interface
61
+ iface = gr.Interface(
62
+ fn=lambda img: format_output(classify_image(img)),
63
+ inputs=gr.Image(type="filepath"),
64
+ outputs=[gr.Textbox(label="True Label (from filename)"), gr.Label()],
65
+ examples=examples,
66
+ title="Pneumonia X-Ray 3-Class Classification with Vision Transformer (ViT) using data augmentation",
67
+ description="Upload an X-ray image to classify it as normal, viral or bacterial pneumonia.",
68
+ )
69
+
70
+ # Launch the app
71
+ if __name__ == "__main__":
72
+ iface.launch()
.history/app_20240617181448.py ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import gradio as gr
3
+ from PIL import Image
4
+ import torch
5
+ from transformers import ViTForImageClassification, ViTImageProcessor
6
+ from datasets import load_dataset
7
+
8
+ # Model and processor configuration
9
+ model_name_or_path = "google/vit-base-patch16-224-in21k"
10
+ processor = ViTImageProcessor.from_pretrained(model_name_or_path)
11
+
12
+ # Load dataset (adjust dataset_path accordingly)
13
+ dataset_path = "pawlo2013/chest_xray"
14
+ train_dataset = load_dataset(dataset_path, split="train")
15
+ class_names = train_dataset.features["label"].names
16
+
17
+ # Load ViT model
18
+ model = ViTForImageClassification.from_pretrained(
19
+ "./models",
20
+ num_labels=len(class_names),
21
+ id2label={str(i): label for i, label in enumerate(class_names)},
22
+ label2id={label: i for i, label in enumerate(class_names)},
23
+ )
24
+
25
+ # Set model to evaluation mode
26
+ model.eval()
27
+
28
+
29
+ # Define the classification function
30
+ def classify_image(img_path):
31
+ img = Image.open(img_path)
32
+ processed_input = processor(images=img, return_tensors="pt")
33
+ with torch.no_grad():
34
+ outputs = model(**processed_input)
35
+ logits = outputs.logits
36
+ probabilities = torch.softmax(logits, dim=1)[0].tolist()
37
+
38
+ result = {class_name: prob for class_name, prob in zip(class_names, probabilities)}
39
+ filename = os.path.basename(img_path).split(".")[0]
40
+ return {"filename": filename, "probabilities": result}
41
+
42
+
43
+ def format_output(output):
44
+ return f"{output['filename']}", output["probabilities"]
45
+
46
+
47
+ # Function to load examples from a folder
48
+ def load_examples_from_folder(folder_path):
49
+ examples = []
50
+ for file in os.listdir(folder_path):
51
+ if file.endswith((".png", ".jpg", ".jpeg")):
52
+ examples.append(os.path.join(folder_path, file))
53
+ return examples
54
+
55
+
56
+ # Define the path to the examples folder
57
+ examples_folder = "./examples"
58
+ examples = load_examples_from_folder(examples_folder)
59
+
60
+ # Create the Gradio interface
61
+ iface = gr.Interface(
62
+ fn=lambda img: format_output(classify_image(img)),
63
+ inputs=gr.Image(type="filepath"),
64
+ outputs=[gr.Textbox(label="True Label (from filename)"), gr.Label()],
65
+ examples=examples,
66
+ title="Pneumonia X-Ray 3-Class Classification with Vision Transformer (ViT) using data augmentation",
67
+ description="Upload an X-ray image to classify it as normal, viral or bacterial pneumonia. Checkout the model in more details at https://huggingface.co/pawlo2013/vit-pneumonia-x-ray_3_class",
68
+ )
69
+
70
+ # Launch the app
71
+ if __name__ == "__main__":
72
+ iface.launch()
.history/requirements_20240617181314.txt ADDED
File without changes
.history/requirements_20240617181322.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ torch
.history/requirements_20240617181330.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ torch
2
+ transformers
.history/requirements_20240617181331.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ torch
2
+ transformers
.history/requirements_20240617181334.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ torch
2
+ transformers
3
+ datasets
app.py CHANGED
@@ -63,8 +63,8 @@ iface = gr.Interface(
63
  inputs=gr.Image(type="filepath"),
64
  outputs=[gr.Textbox(label="True Label (from filename)"), gr.Label()],
65
  examples=examples,
66
- title="Pneumonia X-Ray 3-Class Classification with Vision Transformer (ViT)",
67
- description="Upload an X-ray image to classify it as normal, viral or bacterial pneumonia.",
68
  )
69
 
70
  # Launch the app
 
63
  inputs=gr.Image(type="filepath"),
64
  outputs=[gr.Textbox(label="True Label (from filename)"), gr.Label()],
65
  examples=examples,
66
+ title="Pneumonia X-Ray 3-Class Classification with Vision Transformer (ViT) using data augmentation",
67
+ description="Upload an X-ray image to classify it as normal, viral or bacterial pneumonia. Checkout the model in more details at https://huggingface.co/pawlo2013/vit-pneumonia-x-ray_3_class",
68
  )
69
 
70
  # Launch the app
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ torch
2
+ transformers
3
+ datasets