Spaces:
Running
Running
disabled cache
Browse files
app.py
CHANGED
@@ -52,10 +52,7 @@ def classify_and_visualize(img, device="cpu", discard_ratio=0.9, head_fusion="me
|
|
52 |
|
53 |
|
54 |
def format_output(output):
|
55 |
-
return (
|
56 |
-
output["probabilities"],
|
57 |
-
output["heatmap"] if output["heatmap"] is not None else None,
|
58 |
-
)
|
59 |
|
60 |
|
61 |
# Function to load examples from a folder
|
@@ -76,9 +73,9 @@ def show_final_layer_attention_maps(
|
|
76 |
with torch.no_grad():
|
77 |
outputs = model(**tensor, output_attentions=True)
|
78 |
|
79 |
-
if outputs.attentions[0] is None:
|
80 |
-
|
81 |
-
return None
|
82 |
|
83 |
image = image - image.min()
|
84 |
image = image / image.max()
|
@@ -144,6 +141,9 @@ iface = gr.Interface(
|
|
144 |
gr.Image(label="Attention Heatmap"),
|
145 |
],
|
146 |
examples=examples,
|
|
|
|
|
|
|
147 |
title="Pneumonia X-Ray 3-Class Classification with Vision Transformer (ViT) using data augmentation",
|
148 |
description="Upload an X-ray image to classify it as normal, viral or bacterial pneumonia. Checkout the model in more details [here](https://huggingface.co/pawlo2013/vit-pneumonia-x-ray_3_class). The examples presented are taken from the test set of [Kermany et al. (2018) dataset.](https://data.mendeley.com/datasets/rscbjbr9sj/2.) The attention heatmap over all layers of the transfomer done by the attention rollout techinique by the implementation of [jacobgil](https://github.com/jacobgil/vit-explain).",
|
149 |
)
|
|
|
52 |
|
53 |
|
54 |
def format_output(output):
|
55 |
+
return (output["probabilities"], output["heatmap"])
|
|
|
|
|
|
|
56 |
|
57 |
|
58 |
# Function to load examples from a folder
|
|
|
73 |
with torch.no_grad():
|
74 |
outputs = model(**tensor, output_attentions=True)
|
75 |
|
76 |
+
# if outputs.attentions[0] is None:
|
77 |
+
# print("Attention outputs are None.")
|
78 |
+
# return None
|
79 |
|
80 |
image = image - image.min()
|
81 |
image = image / image.max()
|
|
|
141 |
gr.Image(label="Attention Heatmap"),
|
142 |
],
|
143 |
examples=examples,
|
144 |
+
cache_examples=False,
|
145 |
+
allow_flagging=False,
|
146 |
+
concurrency_limit=1,
|
147 |
title="Pneumonia X-Ray 3-Class Classification with Vision Transformer (ViT) using data augmentation",
|
148 |
description="Upload an X-ray image to classify it as normal, viral or bacterial pneumonia. Checkout the model in more details [here](https://huggingface.co/pawlo2013/vit-pneumonia-x-ray_3_class). The examples presented are taken from the test set of [Kermany et al. (2018) dataset.](https://data.mendeley.com/datasets/rscbjbr9sj/2.) The attention heatmap over all layers of the transfomer done by the attention rollout techinique by the implementation of [jacobgil](https://github.com/jacobgil/vit-explain).",
|
149 |
)
|