import os import gradio as gr import pandas as pd import numpy as np import matplotlib.pyplot as plt import shap import lime.lime_tabular import optuna import wandb import json import time import psutil import shutil import ast from smolagents import HfApiModel, CodeAgent from huggingface_hub import login from sklearn.model_selection import train_test_split, cross_val_score from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score from sklearn.metrics import ConfusionMatrixDisplay from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier from sklearn.linear_model import LogisticRegression from sklearn.preprocessing import LabelEncoder from datetime import datetime from PIL import Image # Authenticate with Hugging Face hf_token = os.getenv("HF_TOKEN") login(token=hf_token) # SmolAgent initialization model = HfApiModel("mistralai/Mixtral-8x7B-Instruct-v0.1", token=hf_token) df_global = None target_column_global = None def clean_data(df): df = df.dropna(how='all', axis=1).dropna(how='all', axis=0) for col in df.select_dtypes(include='object').columns: df[col] = df[col].astype(str) df[col] = LabelEncoder().fit_transform(df[col]) df = df.fillna(df.mean(numeric_only=True)) return df def upload_file(file): global df_global if file is None: return pd.DataFrame({"Error": ["No file uploaded."]}), gr.update(choices=[]) ext = os.path.splitext(file.name)[-1] df = pd.read_csv(file.name) if ext == ".csv" else pd.read_excel(file.name) df = clean_data(df) df_global = df return df.head(), gr.update(choices=df.columns.tolist()) def set_target_column(col_name): global target_column_global target_column_global = col_name return f"✅ Target column set to: {col_name}" def format_analysis_report(raw_output, visuals): try: if isinstance(raw_output, dict): analysis_dict = raw_output else: try: analysis_dict = ast.literal_eval(str(raw_output)) except (SyntaxError, ValueError) as e: print(f"Error parsing CodeAgent output: {e}") return str(raw_output), visuals # Return raw output as string report = f"""

📊 Data Analysis Report

🔍 Key Observations

{format_observations(analysis_dict.get('observations', {}))}

💡 Insights & Visualizations

{format_insights(analysis_dict.get('insights', {}), visuals)}
""" return report, visuals except Exception as e: print(f"Error in format_analysis_report: {e}") return str(raw_output), visuals def format_observations(observations): return '\n'.join([ f"""

{key.replace('_', ' ').title()}

{value}
""" for key, value in observations.items() if 'proportions' in key ]) def format_insights(insights, visuals): return '\n'.join([ f"""
{idx+1}

{insight}

{f'' if idx < len(visuals) else ''}
""" for idx, (key, insight) in enumerate(insights.items()) ]) def analyze_data(csv_file, additional_notes=""): start_time = time.time() process = psutil.Process(os.getpid()) initial_memory = process.memory_info().rss / 1024 ** 2 if os.path.exists('./figures'): shutil.rmtree('./figures') os.makedirs('./figures', exist_ok=True) wandb.login(key=os.environ.get('WANDB_API_KEY')) run = wandb.init(project="huggingface-data-analysis", config={ "model": "mistralai/Mixtral-8x7B-Instruct-v0.1", "additional_notes": additional_notes, "source_file": csv_file.name if csv_file else None }) agent = CodeAgent(tools=[], model=model, additional_authorized_imports=["numpy", "pandas", "matplotlib.pyplot", "seaborn", "sklearn", "json"]) analysis_result = agent.run(""" You are a helpful data analysis agent. Just return insight information and visualization. Load the data that is passed.do not create your own. Automatically detect numeric columns and names. 2. 5 data visualizations 3. at least 5 insights from data 5. Generate publication-quality visualizations and save to './figures/'. Do not use 'open()' or write to files. Just return variables and plots. The dictionary should have the following structure: { 'observations': { 'observation_1_key': 'observation_1_value', 'observation_2_key': 'observation_2_value', ... }, 'insights': { 'insight_1_key': 'insight_1_value', 'insight_2_key': 'insight_2_value', ... } } """, additional_args={"additional_notes": additional_notes, "source_file": csv_file}) execution_time = time.time() - start_time final_memory = process.memory_info().rss / 1024 ** 2 memory_usage = final_memory - initial_memory wandb.log({"execution_time_sec": execution_time, "memory_usage_mb": memory_usage}) visuals = [os.path.join('./figures', f) for f in os.listdir('./figures') if f.endswith(('.png', '.jpg', '.jpeg'))] for viz in visuals: wandb.log({os.path.basename(viz): wandb.Image(viz)}) run.finish() return format_analysis_report(analysis_result, visuals) def compare_models(): import seaborn as sns from sklearn.model_selection import cross_val_predict if df_global is None: return pd.DataFrame({"Error": ["Please upload and preprocess a dataset first."]}), None global target_column_global target = target_column_global X = df_global.drop(target, axis=1) y = df_global[target] if y.dtype == 'object': y = LabelEncoder().fit_transform(y) models = { "RandomForest": RandomForestClassifier(), "LogisticRegression": LogisticRegression(max_iter=1000), "GradientBoosting": GradientBoostingClassifier() } results = [] for name, model in models.items(): # Cross-validation scores scores = cross_val_score(model, X, y, cv=5) # Cross-validated predictions for metrics y_pred = cross_val_predict(model, X, y, cv=5) metrics = { "Model": name, "CV Mean Accuracy": np.mean(scores), "CV Std Dev": np.std(scores), "F1 Score": f1_score(y, y_pred, average="weighted", zero_division=0), "Precision": precision_score(y, y_pred, average="weighted", zero_division=0), "Recall": recall_score(y, y_pred, average="weighted", zero_division=0), } if wandb.run is None: wandb.init(project="model_comparison", name="compare_models", reinit=True) wandb.log({f"{name}_{k.replace(' ', '_').lower()}": v for k, v in metrics.items() if isinstance(v, (float, int))}) results.append(metrics) results_df = pd.DataFrame(results) # Plotting plt.figure(figsize=(8, 5)) sns.barplot(data=results_df, x="Model", y="CV Mean Accuracy", palette="Blues_d") plt.title("Model Comparison (CV Mean Accuracy)") plt.ylim(0, 1) plt.tight_layout() plot_path = "./model_comparison.png" plt.savefig(plot_path) plt.close() return results_df, plot_path # 1. prepare_data should come first def prepare_data(df): global target_column_global from sklearn.model_selection import train_test_split # If no target column is specified, select the first object column or the last column if target_column is None: raise ValueError("Target column not set.") X = df.drop(columns=[target_column_global]) y = df[target_column_global] return train_test_split(X, y, test_size=0.3, random_state=42) def train_model(_): try: wandb.login(key=os.environ.get("WANDB_API_KEY")) wandb_run = wandb.init( project="huggingface-data-analysis", name=f"Optuna_Run_{datetime.now().strftime('%Y%m%d_%H%M%S')}", reinit=True ) X_train, X_test, y_train, y_test = prepare_data(df_global) def objective(trial): params = { "n_estimators": trial.suggest_int("n_estimators", 50, 200), "max_depth": trial.suggest_int("max_depth", 3, 10), } model = RandomForestClassifier(**params) score = cross_val_score(model, X_train, y_train, cv=3).mean() if wandb.run is None: wandb.init(project="model_optimization", name=f"optuna_trial_{trial.number}", reinit=True) wandb.log({**params, "cv_score": score}) return score study = optuna.create_study(direction="maximize") study.optimize(objective, n_trials=15) best_params = study.best_params model = RandomForestClassifier() model.fit(X_train, y_train) y_pred = model.predict(X_test) metrics = { "accuracy": accuracy_score(y_test, y_pred), "precision": precision_score(y_test, y_pred, average="weighted", zero_division=0), "recall": recall_score(y_test, y_pred, average="weighted", zero_division=0), "f1_score": f1_score(y_test, y_pred, average="weighted", zero_division=0), } wandb.log(metrics) wandb_run.finish() # Top 7 trials top_trials = sorted(study.trials, key=lambda x: x.value, reverse=True)[:7] trial_rows = [] for t in top_trials: row = t.params.copy() row["score"] = t.value trial_rows.append(row) trials_df = pd.DataFrame(trial_rows) return metrics, trials_df except Exception as e: print(f"Training Error: {e}") return {}, pd.DataFrame() def explainability(_): import warnings warnings.filterwarnings("ignore") global target_column_global target = target_column_global X = df_global.drop(target, axis=1) y = df_global[target] if y.dtype == "object": y = LabelEncoder().fit_transform(y) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) model = RandomForestClassifier() model.fit(X_train, y_train) explainer = shap.TreeExplainer(model) shap_values = explainer.shap_values(X_test) try: if isinstance(shap_values, list): class_idx = 0 sv = shap_values[class_idx] else: sv = shap_values # Ensure 2D input shape for SHAP plot if len(sv.shape) > 2: sv = sv.reshape(sv.shape[0], -1) # Flatten any extra dimensions # Use safe feature names if mismatch, fallback to dummy num_features = sv.shape[1] if num_features <= X_test.shape[1]: feature_names = X_test.columns[:num_features] else: feature_names = [f"Feature_{i}" for i in range(num_features)] X_shap_safe = pd.DataFrame(np.zeros_like(sv), columns=feature_names) shap.summary_plot(sv, X_shap_safe, show=False) shap_path = "./shap_plot.png" plt.title("SHAP Summary") plt.savefig(shap_path) if wandb.run: wandb.log({"shap_summary": wandb.Image(shap_path)}) plt.clf() except Exception as e: shap_path = "./shap_error.png" print("SHAP plotting failed:", e) plt.figure(figsize=(6, 3)) plt.text(0.5, 0.5, f"SHAP Error:\n{str(e)}", ha='center', va='center') plt.axis('off') plt.savefig(shap_path) if wandb.run: wandb.log({"shap_error": wandb.Image(shap_path)}) plt.clf() # LIME lime_explainer = lime.lime_tabular.LimeTabularExplainer( X_train.values, feature_names=X_train.columns.tolist(), class_names=[str(c) for c in np.unique(y_train)], mode='classification' ) lime_exp = lime_explainer.explain_instance(X_test.iloc[0].values, model.predict_proba) lime_fig = lime_exp.as_pyplot_figure() lime_path = "./lime_plot.png" lime_fig.savefig(lime_path) if wandb.run: wandb.log({"lime_explanation": wandb.Image(lime_path)}) plt.clf() return shap_path, lime_path # Define this BEFORE the Gradio app layout def update_target_choices(): global df_global if df_global is not None: return gr.update(choices=df_global.columns.tolist()) else: return gr.update(choices=[]) with gr.Blocks() as demo: gr.Markdown("## 📊 AI-Powered Data Analysis with Hyperparameter Optimization") with gr.Row(): with gr.Column(): file_input = gr.File(label="Upload CSV or Excel", type="filepath") df_output = gr.DataFrame(label="Cleaned Data Preview") target_dropdown = gr.Dropdown(label="Select Target Column", choices=[], interactive=True) target_status = gr.Textbox(label="Target Column Status", interactive=False) file_input.change(fn=upload_file, inputs=file_input, outputs=[df_output, target_dropdown]) #file_input.change(fn=update_target_choices, inputs=[], outputs=target_dropdown) target_dropdown.change(fn=set_target_column, inputs=target_dropdown, outputs=target_status) with gr.Column(): insights_output = gr.HTML(label="Insights from SmolAgent") visual_output = gr.Gallery(label="Visualizations (Auto-generated by Agent)", columns=2) agent_btn = gr.Button("Run AI Agent (5 Insights + 5 Visualizations)") with gr.Row(): train_btn = gr.Button("Train Model with Optuna + WandB") metrics_output = gr.JSON(label="Performance Metrics") trials_output = gr.DataFrame(label="Top 7 Hyperparameter Trials") with gr.Row(): explain_btn = gr.Button("SHAP + LIME Explainability") shap_img = gr.Image(label="SHAP Summary Plot") lime_img = gr.Image(label="LIME Explanation") with gr.Row(): compare_btn = gr.Button("Compare Models (A/B Testing)") compare_output = gr.DataFrame(label="Model Comparison (CV + Metrics)") compare_img = gr.Image(label="Model Accuracy Plot") agent_btn.click(fn=analyze_data, inputs=[file_input], outputs=[insights_output, visual_output]) train_btn.click(fn=train_model, inputs=[file_input], outputs=[metrics_output, trials_output]) explain_btn.click(fn=explainability, inputs=[], outputs=[shap_img, lime_img]) compare_btn.click(fn=compare_models, inputs=[], outputs=[compare_output, compare_img]) demo.launch(debug=True)