import PIL, torch, os from monai.transforms import CenterSpatialCrop import numpy as np from . import upsample, renormalize, segviz, tally from matplotlib import cm class ImageVisualizer: def __init__(self, size, image_size=None, data_size=None, renormalizer=None, scale_offset=None, level=None, actrange=None, source=None, convolutions=None, quantiles=None, percent_level=None): ''' An ImageVisualizer produces visualizations of unit activations as heatmaps or overlays on top of the original image. The output visualization size is given by `size`. This may be scaled from the original image size `image_size` (inferred from source if not specified) and activation `data_size` (inferred from convolutions if not specified). Imagedata is renormalized as rendered RGB using renormalizer (inferred from source if not specified) and upsampling can be offset using scale_offset (inferred from convolutions if not specified). Per-unit `quantiles` can be provided for computing heatmap ranges (default to 1% to 99% quantiles), and threshold levels (default to `percent_level`=0.95). ''' if image_size is None and source is not None: image_size = upsample.image_size_from_source(source) if renormalizer is None and source is not None: renormalizer = renormalize.renormalizer( source=source, target='byte') if scale_offset is None and convolutions is not None: scale_offset = upsample.sequence_scale_offset(convolutions) if data_size is None and convolutions is not None: data_size = upsample.sequence_data_size(convolutions, image_size) if level is None and quantiles is not None: level = quantiles.quantiles([percent_level or 0.95])[:,0] if actrange is None and quantiles is not None: actrange = quantiles.quantiles([0.01, 0.99]) if isinstance(size, int): size = (size, size) self.size = size self.image_size = image_size self.data_size = data_size self.renormalizer = renormalizer self.scale_offset = scale_offset self.percent_level = percent_level self.level = level self.actrange = actrange self.quantiles = quantiles self.upsampler = None if self.data_size is not None: self.upsampler = upsample.upsampler(size, data_size, image_size=self.image_size, scale_offset=scale_offset) def heatmap(self, activations, unit=None, mode='bilinear', amax=None, amin=None): ''' Produces a heatmap from the given activations. The unit, if specified, is an index into the activations tensor, and is also used to dereference quantile ranges. ''' if amax is None or amin is None: amin, amax = self.range_for(activations, unit) if unit is None: a = activations else: a = activations[unit] upsampler = self.upsampler_for(a) a = upsampler(a[None,None,...], mode=mode)[0,0].cpu() return PIL.Image.fromarray( (cm.hot(((a - amin) / (1e-10 + amax - amin)).numpy()) * 255 ).astype('uint8')) def segmentation(self, segmentations, label=None): ''' Visualizes the given segmentation tensor. If label is specified, zeros all labels other than the given one. ''' if label is not None: segmentations = segmentations.clone() segmentations[segmentations != label] = 0 return segviz.seg_as_image(segmentations, size=self.size) def segment_key(self, segmentations, segmodel, num=None, label=None): ''' Obtains a list of the top segment labels present in the given segmetation tensor, for use in a legend. ''' if label is not None: segmentations = segmentations.clone() segmentations[segmentations != label] = 0 if num is None: num = self.size[0] // 17 return segviz.segment_key(segmentations, segmodel, num) def segment_key_with_lbls(self, segmentations, seglbs): ''' Obtains a list of the top segment labels present in the given segmetation tensor, for use in a legend. ''' return segviz.segment_key_with_lbls(segmentations, seglbs) def image(self, imagedata): ''' Converts the given tensor imagedata to a PIL image, scaling and renormalizing as needed. ''' return PIL.Image.fromarray(self.pytorch_image(imagedata) .permute(1, 2, 0).byte().cpu().numpy()) def masked_image(self, imagedata, activations=None, unit=None, level=None, percent_level=None, **kwargs): ''' Visualizes the given activations, thresholded at a specified level, overlaid on the given image, as a PIL image. ''' result_image = self.pytorch_masked_image(imagedata, activations=activations, unit=unit, level=level, percent_level=percent_level, **kwargs) return PIL.Image.fromarray( result_image.permute(1, 2, 0).cpu().numpy()) def pytorch_masked_image(self, imagedata, activations=None, unit=None, level=None, percent_level=None, thickness=1, mask=None, border_color=None, outside_bright=0.5, inside_color=None): ''' Visualizes the given activations, thresholded at a specified level, overlaid on the given image, as a pytorch byte tensor (channel first). ''' scaled_image = self.pytorch_image(imagedata).float().cpu() if mask is None: mask = self.pytorch_mask(activations, unit, level=level, percent_level=percent_level).cpu() border = border_from_mask(mask, thickness) inside = (mask & (~border)) outside = (~mask & (~border)) inside, outside, border = [d.float() for d in [inside, outside, border]] if border_color is None: border_color = [255.0, 255.0, 0] # yellow border_color = torch.tensor(border_color, dtype=border.dtype, device=border.device)[:,None,None] if inside_color is not None: inside_color = torch.tensor(inside_color, dtype=border.dtype, device=border.device)[:,None,None] result_image = ( (scaled_image if inside_color is None else inside_color) * inside + border_color * border + outside_bright * scaled_image * outside).clamp(0, 255).byte() return result_image def masked_delta(self, imagedata, activations, unit=None, above=None, below=None): ''' Visualizes the given activations, thresholded at a specified level, overlaid on the given image, as a PIL image. ''' result_image = self.pytorch_masked_delta(imagedata, activations, unit=unit, above=above, below=below) return PIL.Image.fromarray( result_image.permute(1, 2, 0).cpu().numpy()) def pytorch_masked_delta(self, imagedata, delta, unit=None, above=None, below=None): ''' Visualizes the given activations, thresholded at a specified level, with green for high numbrers and red for low numbers. ''' scaled_image = self.pytorch_image(imagedata).float().cpu() amask, bmask, aborder, bborder = [torch.tensor(0) for _ in range(4)] if above is not None: amask = self.pytorch_mask(delta, unit, level=above).cpu() aborder = border_from_mask(amask) if below is not None: bmask = ~self.pytorch_mask(delta, unit, level=below).cpu() bborder = border_from_mask(bmask) inside = ((amask | bmask) & ~(aborder | bborder)) outside = (~(amask | bmask) & ~(aborder | bborder)) inside, outside, aborder, bborder = [d.float() for d in [inside, outside, aborder, bborder]] red, green = [torch.tensor(c, dtype=torch.float, device=aborder.device )[:,None,None] for c in [[255, 0, 0], [0, 255, 0]]] result_image = ( scaled_image * inside + green * aborder + red * bborder + 0.5 * scaled_image * outside).clamp(0, 255).byte() return result_image def pytorch_mask(self, activations, unit, level=None, percent_level=None): ''' Computes a pytorch mask of the (upsampled) activations above a specified level. ''' if unit is None: a = activations else: a = activations[unit] if level is None: level = self.level_for(activations, unit, percent_level=percent_level) upsampler = self.upsampler_for(a) return (upsampler(a[None, None,...])[0,0] > level) def pytorch_image(self, imagedata): ''' Scales the given image to the visualized size. returns as a pytorch byte tensor, in (rgb, y, x) channel order. ''' if len(imagedata.shape) == 4: imagedata = imagedata[0] renormalizer = self.renormalizer_for(imagedata) return torch.nn.functional.interpolate( renormalizer(imagedata).float()[None,...], size=self.size)[0] def upsampler_for(self, a): ''' Returns an upsampler instance, defaulting to simple upscaling if a specific upsampler is not specified. ''' if self.upsampler is not None: return self.upsampler return upsample.upsampler(self.size, a.shape, image_size=self.image_size, scale_offset=self.scale_offset, dtype=a.dtype, device=a.device) def range_for(self, activations, unit): ''' Returns a range of activations, using quantiles (1% to 99%) if given, or just using the min and max of the data if quantiles are not given. ''' if unit is not None and self.actrange is not None: if hasattr(unit, '__len__'): unit = unit[1] return tuple(i.item() for i in self.actrange[unit]) return activations.min().item(), activations.max().item() def level_for(self, activations, unit, percent_level=None): ''' Returns the cutoff level for a unit, using quantiles if given or just using stats over the specific instance if not. ''' if unit is not None: if hasattr(unit, '__len__'): unit = unit[1] if percent_level is not None and self.quantiles is not None: return self.quantiles.quantiles(percent_level)[unit].item() if self.level is not None: return self.level[unit].item() s, _ = activations.view(-1).sort() if percent_level is None: percent_level = self.percent_level or 0.95 return s[int(len(s) * percent_level)] def renormalizer_for(self, image): ''' Returns the renormalizer to use for visualizing the tensor image data as RGB. ''' if self.renormalizer is not None: return self.renormalizer return renormalize.renormalizer('zc', 'byte') def masked_image_grid_for_topk( self, compute, dataset, topk, k=None, **kwargs): def compute_viz(gather_indices, *data_batch): acts_batch = compute(*data_batch) if isinstance(acts_batch, tuple): acts_batch, image_batch = acts_batch else: image_batch = data_batch[0] for gather_for, acts, imgt in (zip(gather_indices, acts_batch, image_batch["image"])): # TODO This is only a single direction # Visualize all low-dimensional activations in that direction ld_res = acts.shape[-1] img_slices = torch.linspace(int(64/ld_res/2), 64-int(64/ld_res/2), ld_res, dtype=torch.long) for unit, rank in gather_for: yield((unit, rank), torch.stack([ self.pytorch_masked_image( # This will break when used for any other tasks (imgt[..., img_depth]).repeat(3, 1, 1), acts[..., ld_depth], unit).permute(1,2,0).cpu() for ld_depth, img_depth in enumerate(img_slices)])) #for unit, rank in gather_for: # three_channel_image = imgt[..., 0][0].repeat(3, 1, 1) # yield((unit, rank), self.pytorch_masked_image(three_channel_image, acts[..., 0], unit).permute(1,2,0).cpu()) gt = tally.gather_topk(compute_viz, dataset, topk=topk, k=k, **kwargs) return gt.result() def masked_single_image_for_topk( self, compute, dataset, topk, k=None, **kwargs): def compute_viz(gather_indices, *data_batch): acts_batch = compute(*data_batch) if isinstance(acts_batch, tuple): acts_batch, image_batch = acts_batch else: image_batch = data_batch[0] for gather_for, acts, imgt in (zip(gather_indices, acts_batch, image_batch["image"])): # TODO This is only a single direction # Visualize all low-dimensional activations in that direction ld_res = acts.shape[-1] img_slices = torch.linspace(int(64/ld_res/2), 64-int(64/ld_res/2), ld_res, dtype=torch.long) for unit, rank in gather_for: #masked_acts = torch.zeros_like(acts[unit]) #mask = (acts[unit] > self.level_for(acts[unit], unit)) #masked_acts[mask] = acts[unit][mask] masked_acts = torch.zeros_like(acts) mask = (acts > self.level_for(acts, unit)) masked_acts[mask] = acts[mask] selected_dim = torch.argmax(torch.sum(masked_acts.view(-1, ld_res), dim=0)).item() yield((unit, rank), self.pytorch_masked_image( (imgt[..., img_slices[selected_dim]]).repeat(3, 1, 1), acts[..., selected_dim], unit).permute(1,2,0).cpu()[None, ...]) #for unit, rank in gather_for: # three_channel_image = imgt[..., 0][0].repeat(3, 1, 1) # yield((unit, rank), self.pytorch_masked_image(three_channel_image, acts[..., 0], unit).permute(1,2,0).cpu()) gt = tally.gather_topk(compute_viz, dataset, topk=topk, k=k, **kwargs) return gt.result() def individual_masked_images_for_topk( self, compute, dataset, topk, k=None, **kwargs): # Example compute function: # def compute(image_batch): # image_batch = image_batch.cuda() # acts_batch = model.retained_layer(layername) gt = self.masked_image_grid_for_topk( compute, dataset, topk, k=k, **kwargs) return [[PIL.Image.fromarray(d.cpu().numpy()) for d in row] for row in gt] def masked_images_for_topk( self, compute, dataset, topk, k=None, gap=5, **kwargs): # Example compute function: # def compute(image_batch): # image_batch = image_batch.cuda() # acts_batch = model.retained_layer(layername) gt = self.masked_image_grid_for_topk( compute, dataset, topk, k=k, **kwargs) return [strip_image_from_grid_row(row, gap=gap) for row in gt] def masked_single_images_for_topk( self, compute, dataset, topk, k=None, gap=5, per_row=5, **kwargs): # Example compute function: # def compute(image_batch): # image_batch = image_batch.cuda() # acts_batch = model.retained_layer(layername) gt = self.masked_single_image_for_topk( compute, dataset, topk, k=k, **kwargs) return [strip_image_from_grid_row(torch.vstack([x.unsqueeze(0) for x in row.squeeze(1).split(per_row, dim=0) if x.shape[0] == per_row]), gap=gap) for row in gt] #return [strip_image_from_grid_row(torch.stack([gt[i+j] for j in range(per_row)]), gap=gap) for i in range(len(gt)//per_row)] def image_activation_tuples_for_topk( self, compute, dataset, data_path, topk, k=None, **kwargs): def compute_viz(gather_indices, *data_batch): acts_batch = compute(*data_batch) if isinstance(acts_batch, tuple): acts_batch, image_batch = acts_batch else: image_batch = data_batch[0] for gather_for, acts, path, level_idx in zip(gather_indices, acts_batch, image_batch["path"], image_batch["level_idx"]): raw_ct = torch.tensor(np.load(os.path.join(data_path, 'raw', path)))[None, ...] seg = torch.tensor(np.load(os.path.join(data_path, 'seg', path))) mask = torch.zeros_like(seg) mask[seg == level_idx] = 1 crop = CenterSpatialCrop(64) raw_ct_crop = crop(raw_ct) mask_ct_crop = crop(raw_ct * mask[None, ...]) upsampled_acts = torch.nn.Upsample(size=(64,)*3, mode="trilinear", align_corners=True)(acts[None, ...]) # normalize activations to [0, 1] per unit normalized_upsampled_acts = torch.clone(upsampled_acts) normalized_upsampled_acts -= torch.amin(normalized_upsampled_acts, dim=(-3, -2, -1), keepdim=True) normalized_upsampled_acts /= torch.amax(normalized_upsampled_acts, dim=(-3, -2, -1), keepdim=True) for unit, rank in gather_for: mask = upsampled_acts[0, unit] > self.level_for(upsampled_acts, unit) normalized_upsampled_acts[0, unit][~mask] = 0 yield ((unit, rank), torch.cat((raw_ct_crop.cpu(), normalized_upsampled_acts[0, unit][None, ...].detach().cpu(), mask_ct_crop.cpu()), dim=0)) gt = tally.gather_topk(compute_viz, dataset, topk=topk, k=k, **kwargs) return gt.result() def masked_image_grid_for_row(self, compute, dataset, unit, indexes): results = [] for rank in indexes: img_batch = dataset[rank][0][None,...] acts_batch = compute(img_batch) results.append(self.pytorch_masked_image( img_batch[0], acts_batch[0], unit) .permute(1,2,0).cpu()[None,...]) return torch.cat(results) def masked_image_row(self, compute, dataset, unit, indexes, gap=5): row = self.masked_image_grid_for_row( compute, dataset, unit, indexes) return strip_image_from_grid_row(row, gap=gap) def masked_image_for_conditional_topk(self, compute, dataset, ctk, classnum, unit, k=10, gap=5): row = self.masked_image_grid_for_row( compute, dataset, unit, ctk.conditional(classnum).result()[1][unit][:k]) return strip_image_from_grid_row(row, gap=gap) def strip_image_from_grid_row(row, gap=5, bg=255): strip = torch.full( (row.shape[0] * (row.shape[3] + gap) - gap, row.shape[1] * (row.shape[3] + gap) - gap, row.shape[4]), bg, dtype=row.dtype) for i in range(0, row.shape[0] * row.shape[1]): strip[(i // row.shape[1]) * (row.shape[2] + gap) : ((i // row.shape[1])+1) * (row.shape[2] + gap) - gap, (i % row.shape[1]) * (row.shape[3] + gap) : ((i % row.shape[1])+1) * (row.shape[3] + gap) - gap, :] = row[i // row.shape[1]][i % row.shape[1]] return PIL.Image.fromarray(strip.numpy()) def border_from_mask(mask, thickness=1, outside=True): a = mask out = torch.zeros_like(a) for it in range(thickness): h = (a[:-1,:] != a[1:,:]) v = (a[:,:-1] != a[:,1:]) d = (a[:-1,:-1] != a[1:,1:]) u = (a[1:,:-1] != a[:-1,1:]) out[:-1,:-1] |= d out[1:,1:] |= d out[1:,:-1] |= u out[:-1,1:] |= u out[:-1,:] |= h out[1:,:] |= h out[:,:-1] |= v out[:,1:] |= v if it > 0: out |= a a = out if outside: out &= ~mask return out