import numbers import torch from netdissect.autoeval import autoimport_eval from netdissect import pbar from netdissect.nethook import InstrumentedModel from netdissect.easydict import EasyDict def create_instrumented_model(args, **kwargs): ''' Creates an instrumented model out of a namespace of arguments that correspond to ArgumentParser command-line args: model: a string to evaluate as a constructor for the model. pthfile: (optional) filename of .pth file for the model. layers: a list of layers to instrument, defaulted if not provided. edit: True to instrument the layers for editing. gen: True for a generator model. One-pixel input assumed. imgsize: For non-generator models, (y, x) dimensions for RGB input. cuda: True to use CUDA. The constructed model will be decorated with the following attributes: input_shape: (usually 4d) tensor shape for single-image input. output_shape: 4d tensor shape for output. feature_shape: map of layer names to 4d tensor shape for featuremaps. retained: map of layernames to tensors, filled after every evaluation. ablation: if editing, map of layernames to [0..1] alpha values to fill. replacement: if editing, map of layernames to values to fill. When editing, the feature value x will be replaced by: `x = (replacement * ablation) + (x * (1 - ablation))` ''' args = EasyDict(vars(args), **kwargs) # Construct the network if args.model is None: pbar.print('No model specified') return None if isinstance(args.model, torch.nn.Module): model = args.model else: model = autoimport_eval(args.model) # Unwrap any DataParallel-wrapped model if isinstance(model, torch.nn.DataParallel): model = next(model.children()) # Load its state dict meta = {} if getattr(args, 'pthfile', None) is not None: data = torch.load(args.pthfile) modelkey = getattr(args, 'modelkey', 'state_dict') if modelkey in data: meta = {} for key in data: if isinstance(data[key], numbers.Number): meta[key] = data[key] data = data[modelkey] submodule = getattr(args, 'submodule', None) if submodule is not None and len(submodule): remove_prefix = submodule + '.' data = { k[len(remove_prefix):]: v for k, v in data.items() if k.startswith(remove_prefix)} if not len(data): pbar.print('No submodule %s found in %s' % (submodule, args.pthfile)) return None model.load_state_dict(data, strict=not getattr(args, 'unstrict', False)) # Decide which layers to instrument. if getattr(args, 'layer', None) is not None: args.layers = [args.layer] # If the layer '?' is the only specified, just print out all layers. if getattr(args, 'layers', None) is not None: if len(args.layers) == 1 and args.layers[0] == ('?', '?'): for name, layer in model.named_modules(): pbar.print(name) import sys sys.exit(0) if getattr(args, 'layers', None) is None: # Skip wrappers with only one named model container = model prefix = '' while len(list(container.named_children())) == 1: name, container = next(container.named_children()) prefix += name + '.' # Default to all nontrivial top-level layers except last. args.layers = [prefix + name for name, module in container.named_children() if type(module).__module__ not in [ # Skip ReLU and other activations. 'torch.nn.modules.activation', # Skip pooling layers. 'torch.nn.modules.pooling'] ][:-1] pbar.print('Defaulting to layers: %s' % ' '.join(args.layers)) # Now wrap the model for instrumentation. model = InstrumentedModel(model) model.meta = meta # Instrument the layers. model.retain_layers(args.layers) model.eval() if args.cuda: model.cuda() # Annotate input, output, and feature shapes annotate_model_shapes(model, gen=getattr(args, 'gen', False), imgsize=getattr(args, 'imgsize', None)) return model def annotate_model_shapes(model, gen=False, imgsize=None): assert (imgsize is not None) or gen # Figure the input shape. if gen: # We can guess a generator's input shape by looking at the model. # Examine first conv in model to determine input feature size. first_layer = [c for c in model.modules() if isinstance(c, (torch.nn.Conv2d, torch.nn.ConvTranspose2d, torch.nn.Linear))][0] # 4d input if convolutional, 2d input if first layer is linear. if isinstance(first_layer, (torch.nn.Conv2d, torch.nn.ConvTranspose2d)): input_shape = (1, first_layer.in_channels, 1, 1) else: input_shape = (1, first_layer.in_features) else: # For a classifier, the input image shape is given as an argument. input_shape = (1, 3) + tuple(imgsize) # Run the model once to observe feature shapes. device = next(model.parameters()).device dry_run = torch.zeros(input_shape).to(device) with torch.no_grad(): output = model(dry_run) # Annotate shapes. model.input_shape = input_shape model.feature_shape = { layer: feature.shape for layer, feature in model.retained_features().items() } model.output_shape = output.shape return model