from fastapi.old_util import get_doc_paths from zipfile import ZipFile import numpy as np import time def html_response(thoughts): html = '' html += '' html += '' html += '' html += '
' for thought in thoughts: html += '
' if thought.modality == 'language': content = open(thought.filename, 'r').read() html += '
' + content + '
' else: html += '' html += '

' html += '
' return html def save_success_response(): return open('assets/success.html').read() def save_lang_form_response(): return open('assets/save_lang.html').read() def save_imag_form_response(): return open('assets/save_imag.html').read() def find_lang_form_response(): return open('assets/find_lang.html').read() def find_imag_form_response(): return open('assets/find_imag.html').read() def archive_response(): paths = get_doc_paths('conceptarium') with ZipFile('conceptarium.zip', 'w') as zip: for path in paths: zip.write(path) return 'conceptarium.zip' def plaintext_response(thoughts): plaintext = '' for thought in thoughts: if thought.modality == 'language': content = open(thought.filename, 'r').read() plaintext += '\"' + content + '\"\n' return plaintext def file_response(thoughts): for thought in thoughts: if thought.modality == 'imagery': return thought.filename def json_response(thoughts): response_json = [] for thought in thoughts: thought_json = { 'timestamp': thought.timestamp, 'interest': thought.interest, 'activation': np.log(thought.interest / (1 - 0.9)) - 0.9 * np.log((time.time() - thought.timestamp) / (3600 * 24) + 0.1), 'modality': thought.modality, 'embedding': thought.embedding.tolist(), } if thought.modality == 'language': thought_json['content'] = open(thought.filename, 'r').read() else: thought_json['filename'] = '/' + thought.filename response_json += [thought_json] return response_json