import streamlit as st import time import requests import os import json import glob import re import random import difflib from random import randrange enable_summary_button = False prefix_lst = [ "pgj_d_4096", "pgj_d_2048", "pgj_d_1024_v2", "pgj_d_1024_layer_14", "pgj_d_1024_layer_7", "pgj_d_1024_layer_2", "pgj_d_1024_layer_1" ] model_names = { prefix_lst[0]: 'PatentGPT-J-6B', prefix_lst[1]: 'PatentGPT-J-1.6B', prefix_lst[2]: 'PatentGPT-J-456M', prefix_lst[3]: 'PatentGPT-J-279M', prefix_lst[4]: 'PatentGPT-J-191M', prefix_lst[5]: 'PatentGPT-J-128M', prefix_lst[6]: 'PatentGPT-J-115M',} # experiment 3 folder = os.path.join('experiments', 'non_patent') id_to_scroll = 1 # which of the above to scroll through first_claim_only = True #experiment 2 # folder = os.path.join('experiments', 'ipg20220104_500') # #folder = "device_serve_results" # id_to_scroll = 1 # which of the above to scroll through # first_claim_only = False # prefix_lst = ["my_gptj_6b_tpu_size_8", "pgj_d_4096", "pgj_d_2048", "pgj_d_1024_layer_14", "pgj_d_1024_layer_7", "pgj_d_1024_layer_2", "pgj_d_1024_layer_1"] # #, "pgj_large", "pgj_medium", "pgj_small", ] # # "pgj_d_1024_layer_14" # experiment 1 # folder = os.path.join('experiments', 'ipg22_500') # # (previous) folder = "eval_ipg22_500" # id_to_scroll = 1 # which of the above to scroll through # first_claim_only = True ignore_outscope = True # ignore pick > 10 def handle_char_return(text): if text == '(none)': # unicorn text text == '' return text def calc_details(base_fn): full_fn = os.path.join(folder, base_fn) if os.path.exists(full_fn) == False: return None, -1, -1, None, None, None, None, None with open(full_fn) as f: result = json.loads(f.read()) print("Loaded: %s" % full_fn) lst = result['output'] recv = result['recv'] sum_pick = 0 sum_prob = 0 sum_outscope_count = 0 sum_outscope_len = 0 sum_hit_1 = 0 sum_top_10_len = 0 full_text = '' token_count = 0 for i, tk in enumerate(lst[:-1]): token_text = handle_char_return(tk['actual_next_token_text']) next_top_seq = int(tk['actual_next_token_top_seq']) next_top_prob = float(tk['actual_next_token_top_prob']) full_text += token_text if next_top_seq == 0: sum_hit_1 += 1 # press "tab" for the top pick if ignore_outscope and next_top_seq>=10: sum_outscope_count += 1 sum_outscope_len += len(token_text) # use length as keystrokes else: sum_pick += min(next_top_seq+1, len(token_text)) #sum_pick += (next_top_seq+1) # press "down" & "tab" sum_prob += next_top_prob sum_top_10_len += len(token_text) token_count += 1 if ignore_outscope: if token_count == 0: # unlikely avg_pick = 0 avg_prob = 0 else: avg_pick = float(sum_pick) / token_count avg_prob = float(sum_prob) / token_count else: avg_pick = float(sum_pick) / token_count avg_prob = float(sum_prob) / token_count return result, avg_pick, avg_prob, token_count, sum_pick, sum_prob, sum_outscope_count, sum_outscope_len, sum_hit_1, sum_top_10_len, full_text def show_avg(base_fn, model_name, patent_claim_num, show_pick=False): result, avg_pick, avg_prob, token_count, sum_pick, sum_prob, sum_outscope_count, sum_outscope_len, sum_hit_1, sum_top_10_len, full_text = calc_details(base_fn) if result is None: return None lst = result['output'] result = '' sum_all = {} colors = [ ['00ff00', '000000', '1'], ['008800', 'ffffff', '2-10'], ['ff0000', 'ffffff', 'out of top 10'], ] for i, tk in enumerate(lst): if i == len(lst)-1: break token_text = handle_char_return(tk['actual_next_token_text']) if token_text == '<|end_of_claim|>': break if token_text == '(none)': # for unicorn text break pick = int(tk['actual_next_token_top_seq']) prob = float(tk['actual_next_token_top_prob']) for j, item in enumerate(colors): sum_all[item[2]] = 0 if pick == 0: bg_color = colors[0][0] fg_color = colors[0][1] tag = colors[0][2] sum_all[tag] += 1 elif pick >= 1 and pick < 10: bg_color = colors[1][0] fg_color = colors[1][1] tag = colors[1][2] sum_all[tag] += 1 else: # pick >= 10 #elif pick >= 10 and pick < 100: bg_color = colors[2][0] fg_color = colors[2][1] tag = colors[2][2] sum_all[tag] += 1 if show_pick: pick = '[%s]' % pick else: pick = '' result += "%s%s " % (bg_color, fg_color, token_text, pick) color_msg = '' for i, v in enumerate(colors): color_msg += " %s  " % (v[0], v[1], v[2]) # sum_pick as top 1~10 keys_with_auto = (sum_pick+sum_outscope_len) keys_without_auto = len(full_text) saved_ratio = float(keys_without_auto-keys_with_auto)/keys_without_auto * 100 s = 'model: %s\n' \ 'Autocomplete Effectiveness: %.1f%% (keystrokes saved)\n' \ 'Total keystrokes: %s (with autocomplete), %s (without autocomplete)\n' \ 'Keystroke distribution: top 1~10: %s (top 1: %s), out of top 10: %s' % (model_name, saved_ratio, keys_with_auto, keys_without_auto, sum_pick, sum_hit_1, sum_outscope_len) st.text(s) st.markdown(color_msg, unsafe_allow_html=True) st.markdown(result, unsafe_allow_html=True) sum_lst = [sum_all['1'], sum_all['2-10'], sum_all['out of top 10']] return sum_lst def show_overall_summary(prefix_lst, select_lst): for prefix in prefix_lst: acc_token_count = 0 acc_sum_pick = 0 acc_sum_prob = 0 acc_sum_outscope_count = 0 acc_sum_outscope_len = 0 acc_sum_hit_1 = 0 acc_sum_top_10_len = 0 acc_full_text_len = 0 pre_full_text = '' for i, num in enumerate(select_lst): base_fn = '%s_%s_forward.json' % (prefix, num) result, avg_pick, avg_prob, token_count, sum_pick, sum_prob, sum_outscope_count, sum_outscope_len, sum_hit_1, sum_top_10_len, full_text = calc_details(base_fn) acc_token_count += token_count acc_sum_pick += sum_pick acc_sum_prob += sum_prob acc_sum_outscope_count += sum_outscope_count acc_sum_outscope_len += sum_outscope_len acc_sum_hit_1 += sum_hit_1 acc_sum_top_10_len += sum_top_10_len acc_full_text_len += len(full_text) if acc_token_count > 0: # acc_sum_pick --> top 1~10 keys_with_auto = acc_sum_pick + acc_sum_outscope_len keys_without_auto = acc_full_text_len saved_ratio = float(keys_without_auto-keys_with_auto)/keys_without_auto * 100 st.text('[ %s ]\n' \ 'Autocomplete Effectiveness: %.1f%% (ratio of saving keystroke)\n' \ '(sum) keys_with_auto: %s, top_10_keys: %s, out_of_scope: %s, sum_hit_1: %s\n' \ 'keys_without_auto: %s, top_10_len: %s, prob: %.2f' % ( model_names[prefix], saved_ratio, '{:,}'.format(keys_with_auto), '{:,}'.format(acc_sum_pick), '{:,}'.format(acc_sum_outscope_len), '{:,}'.format(acc_sum_hit_1), '{:,}'.format(keys_without_auto), '{:,}'.format(acc_sum_top_10_len), acc_sum_prob, )) st.text('%s & %.1f\\%% & %s & %s & %s & %s & %s \\\\' % (model_names[prefix], saved_ratio, '{:,}'.format(keys_with_auto), '{:,}'.format(acc_sum_pick), '{:,}'.format(acc_sum_outscope_len), '{:,}'.format(acc_sum_hit_1), '{:,}'.format(keys_without_auto))) # st.text('* acc_token_count =%s --> (avg) hits: %.2f, keys: %.2f, prob: %.2f, outscope: %.2f' % ( # acc_token_count, # float(acc_sum_hit_1)/acc_token_count, # float(acc_sum_pick)/acc_token_count, # float(acc_sum_prob)/acc_token_count, # float(acc_sum_outscope_count)/acc_token_count)) def main(): st.set_page_config( # Alternate names: setup_page, page, layout layout="wide", # Can be "centered" or "wide". In the future also "dashboard", etc. initial_sidebar_state="auto", # Can be "auto", "expanded", "collapsed" page_title="Patent-GPT-J demo", # String or None. Strings get appended with "• Streamlit". page_icon=None, # String, anything supported by st.image, or None. ) st.subheader("PatentGPT-J Demo 3 (Autocomplete Effectiveness)") st.text("Data coverage: unicorn text") num_set = set() fn_lst = glob.glob(os.path.join(folder, '*')) for i, fn in enumerate(fn_lst): for prefix in prefix_lst: v = re.search('(.*?)%s\_(\d+\_\d+)\_(.*?)' % prefix, fn) if v is None: v = re.search('(.*?)%s\_(\w+\_\d+)\_(.*?)' % prefix, fn) if v is None: continue v = v.group(2) if first_claim_only: if v.endswith('_1'): num_set.add(v) else: num_set.add(v) num_lst = list(num_set) num_lst.sort() select_lst = [] for i, num in enumerate(num_lst): all_existed = True for prefix in prefix_lst: fn = os.path.join(folder, '%s_%s_forward.json' % (prefix, num)) if os.path.exists(fn) == False: all_existed = False break if all_existed: select_lst.append(num) select_lst.sort() show_patent_lst = [ s.replace('_', ' (claim ') + ')' for s in select_lst] pick = random.randrange(len(select_lst)) num = select_lst[pick] #st.text('debug 1') avgs = [] for prefix in prefix_lst: base_fn = '%s_%s_forward.json' % (prefix, num) one_avg = show_avg(base_fn, model_names[prefix], num) if one_avg is not None: avgs.append(one_avg) if __name__ == "__main__": main()