import types import copy import torch import math, os from torch.nn import functional as F import torch.nn as nn RWKV_HEAD_QK_DIM = 2048 DEBUG_TIME = False if os.environ['RWKV_RUN_DEVICE'] == 'cuda': T_MAX = 2048 from torch.utils.cpp_extension import load wkv_cuda = load(name="wkv", sources=["cuda/wkv_op.cpp", "cuda/wkv_cuda.cu"], verbose=True, extra_cuda_cflags=['-res-usage', '--maxrregcount 60', '--use_fast_math', '-O3', '-Xptxas -O3', f'-DTmax={T_MAX}']) class WKV(torch.autograd.Function): @staticmethod def forward(ctx, B, T, C, w, u, k, v): ctx.B = B ctx.T = T ctx.C = C assert T <= T_MAX assert B * C % min(C, 1024) == 0 if '32' in os.environ['RWKV_FLOAT_MODE']: w = -torch.exp(w.contiguous()) u = u.contiguous() k = k.contiguous() v = v.contiguous() else: w = -torch.exp(w.float().contiguous()) u = u.float().contiguous() k = k.float().contiguous() v = v.float().contiguous() ctx.save_for_backward(w, u, k, v) y = torch.empty((B, T, C), device='cuda', memory_format=torch.contiguous_format) wkv_cuda.forward(B, T, C, w, u, k, v, y) if '32' in os.environ['RWKV_FLOAT_MODE']: return y elif os.environ['RWKV_FLOAT_MODE'] == 'fp16': return y.half() elif os.environ['RWKV_FLOAT_MODE'] == 'bf16': return y.bfloat16() @staticmethod def backward(ctx, gy): B = ctx.B T = ctx.T C = ctx.C assert T <= T_MAX assert B * C % min(C, 1024) == 0 w, u, k, v = ctx.saved_tensors gw = torch.zeros((B, C), device='cuda').contiguous() gu = torch.zeros((B, C), device='cuda').contiguous() gk = torch.zeros((B, T, C), device='cuda').contiguous() gv = torch.zeros((B, T, C), device='cuda').contiguous() if '32' in os.environ['RWKV_FLOAT_MODE']: wkv_cuda.backward(B, T, C, w, u, k, v, gy.contiguous(), gw, gu, gk, gv) else: wkv_cuda.backward(B, T, C, w, u, k, v, gy.float().contiguous(), gw, gu, gk, gv) gw = torch.sum(gw, dim=0) gu = torch.sum(gu, dim=0) if '32' in os.environ['RWKV_FLOAT_MODE']: return (None, None, None, gw, gu, gk, gv) elif os.environ['RWKV_FLOAT_MODE'] == 'fp16': return (None, None, None, gw.half(), gu.half(), gk.half(), gv.half()) elif os.environ['RWKV_FLOAT_MODE'] == 'bf16': return (None, None, None, gw.bfloat16(), gu.bfloat16(), gk.bfloat16(), gv.bfloat16()) def RUN_CUDA(B, T, C, w, u, k, v): return WKV.apply(B, T, C, w.cuda(), u.cuda(), k.cuda(), v.cuda()) RWKV_CFG = types.SimpleNamespace() class RWKV_ChannelMix(nn.Module): def __init__(self, layer_id): super().__init__() self.layer_id = layer_id self.time_shift = nn.ZeroPad2d((0,0,1,-1)) self.time_mix_k = nn.Parameter(torch.ones(1, 1, RWKV_CFG.n_embd)) self.time_mix_r = nn.Parameter(torch.ones(1, 1, RWKV_CFG.n_embd)) hidden_sz = 4 * RWKV_CFG.n_embd self.key = nn.Linear(RWKV_CFG.n_embd, hidden_sz, bias=False) self.receptance = nn.Linear(RWKV_CFG.n_embd, RWKV_CFG.n_embd, bias=False) self.value = nn.Linear(hidden_sz, RWKV_CFG.n_embd, bias=False) def forward(self, x): xx = self.time_shift(x) xk = x * self.time_mix_k + xx * (1 - self.time_mix_k) xr = x * self.time_mix_r + xx * (1 - self.time_mix_r) k = self.key(xk) k = torch.square(torch.relu(k)) kv = self.value(k) rkv = torch.sigmoid(self.receptance(xr)) * kv return rkv class RWKV_TimeMix(nn.Module): def __init__(self, layer_id): super().__init__() self.layer_id = layer_id self.time_decay = nn.Parameter(torch.ones(RWKV_CFG.n_embd)) self.time_first = nn.Parameter(torch.ones(RWKV_CFG.n_embd) * math.log(0.3)) self.time_shift = nn.ZeroPad2d((0,0,1,-1)) self.time_mix_k = nn.Parameter(torch.ones(1,1,RWKV_CFG.n_embd)) self.time_mix_v = nn.Parameter(torch.ones(1,1,RWKV_CFG.n_embd)) self.time_mix_r = nn.Parameter(torch.ones(1,1,RWKV_CFG.n_embd)) self.key = nn.Linear(RWKV_CFG.n_embd, RWKV_CFG.n_embd, bias=False) self.value = nn.Linear(RWKV_CFG.n_embd, RWKV_CFG.n_embd, bias=False) self.receptance = nn.Linear(RWKV_CFG.n_embd, RWKV_CFG.n_embd, bias=False) self.output = nn.Linear(RWKV_CFG.n_embd, RWKV_CFG.n_embd, bias=False) def forward(self, x): B, T, C = x.size() xx = self.time_shift(x) xk = x * self.time_mix_k + xx * (1 - self.time_mix_k) xv = x * self.time_mix_v + xx * (1 - self.time_mix_v) xr = x * self.time_mix_r + xx * (1 - self.time_mix_r) k = self.key(xk) v = self.value(xv) r = self.receptance(xr) rwkv = torch.sigmoid(r) * RUN_CUDA(B, T, C, self.time_decay, self.time_first, k, v) rwkv = self.output(rwkv) return rwkv class Block(nn.Module): def __init__(self, layer_id): super().__init__() self.layer_id = layer_id self.ln1 = nn.LayerNorm(RWKV_CFG.n_embd) self.ln2 = nn.LayerNorm(RWKV_CFG.n_embd) if self.layer_id == 0: self.ln0 = nn.LayerNorm(RWKV_CFG.n_embd) if self.layer_id == 0 and RWKV_CFG.model_type == 'RWKV-ffnPre': self.ffnPre = RWKV_ChannelMix(layer_id+1000) else: self.att = RWKV_TimeMix(layer_id) self.ffn = RWKV_ChannelMix(layer_id) def forward(self, x): if self.layer_id == 0: x = self.ln0(x) if self.layer_id == 0 and RWKV_CFG.model_type == 'RWKV-ffnPre': x = x + self.ffnPre(self.ln1(x)) else: x = x + self.att(self.ln1(x)) x = x + self.ffn(self.ln2(x)) return x class RWKV_GPT(nn.Module): def __init__(self, MODEL_NAME, RUN_DEVICE, model_type, vocab_size, n_layer, n_embd, ctx_len): global RWKV_CFG super().__init__() RWKV_CFG.RUN_DEVICE = RUN_DEVICE RWKV_CFG.model_type = model_type RWKV_CFG.vocab_size = vocab_size RWKV_CFG.n_layer = n_layer RWKV_CFG.n_embd = n_embd RWKV_CFG.ctx_len = ctx_len print('\nloading RWKV-GPT', MODEL_NAME) self.emb = nn.Embedding(vocab_size, n_embd) self.blocks = nn.Sequential(*[Block(i) for i in range(n_layer)]) self.ln_out = nn.LayerNorm(n_embd) self.head = nn.Linear(n_embd, vocab_size, bias=False) if RWKV_HEAD_QK_DIM > 0: self.head_q = nn.Linear(n_embd, RWKV_HEAD_QK_DIM, bias=False) self.head_q.scale_init = 0 self.head_k = nn.Linear(n_embd, RWKV_HEAD_QK_DIM, bias=False) self.head_k.scale_init = 0.1 self.register_buffer("copy_mask", torch.tril( torch.ones(ctx_len, ctx_len))) self.ctx_len = ctx_len self.eval() self.load_state_dict(torch.load(MODEL_NAME + '.pth')) self.eval() def forward(self, idx): B, T = idx.size() assert T <= self.ctx_len, "Cannot forward, because len(input) > model ctx_len." x = self.emb(idx) x = self.blocks(x) x = self.ln_out(x) if RWKV_HEAD_QK_DIM > 0: q = self.head_q(x)[:, :T, :] k = self.head_k(x)[:, :T, :] c = (q @ k.transpose(-2, -1)) * (1.0 / RWKV_HEAD_QK_DIM) c = c.masked_fill(self.copy_mask[:T, :T] == 0, 0) if '32' in os.environ['RWKV_FLOAT_MODE']: c = c @ F.one_hot(idx, num_classes=RWKV_CFG.vocab_size) elif os.environ['RWKV_FLOAT_MODE'] == 'fp16': c = c @ F.one_hot(idx, num_classes=RWKV_CFG.vocab_size).half() elif os.environ['RWKV_FLOAT_MODE'] == 'bf16': c = c @ F.one_hot(idx, num_classes=RWKV_CFG.vocab_size).bfloat16() x = self.head(x) + c else: x = self.head(x) return x class RWKV_RNN(): def __init__(self, MODEL_NAME, RUN_DEVICE, model_type, n_layer, n_embd, ctx_len): self.RUN_DEVICE = RUN_DEVICE self.model_type = model_type self.n_layer = n_layer self.n_embd = n_embd self.ctx_len = ctx_len self.w = types.SimpleNamespace() #w = torch.load(MODEL_NAME + '.pth',map_location=torch.device(RUN_DEVICE)) w = torch.load(MODEL_NAME + '.pth', map_location=torch.device(RUN_DEVICE), weights_only=True) for x in w.keys(): w[x] = w[x].float() if '.time_' in x: w[x] = w[x].squeeze() if '.time_decay' in x: w[x] = -torch.exp(w[x]) if DEBUG_TIME and '.time_' in x: print(x, w[x].squeeze().cpu().numpy()) xx = x.split('.') here = self.w for i in range(len(xx)): if xx[i].isdigit(): ii = int(xx[i]) if ii not in here: here[ii] = types.SimpleNamespace() here = here[ii] else: if i == len(xx) - 1: setattr(here, xx[i], w[x]) elif not hasattr(here, xx[i]): if xx[i+1].isdigit(): setattr(here, xx[i], {}) else: setattr(here, xx[i], types.SimpleNamespace()) here = getattr(here, xx[i]) self.clear() def clear(self): self.xx = {} self.aa = {} self.bb = {} self.pp = {} self.hk = None def save(self, target): target.xx = copy.deepcopy(self.xx) target.aa = copy.deepcopy(self.aa) target.bb = copy.deepcopy(self.bb) target.pp = copy.deepcopy(self.pp) target.hk = copy.deepcopy(self.hk) def load(self, target): self.xx = copy.deepcopy(target.xx) self.aa = copy.deepcopy(target.aa) self.bb = copy.deepcopy(target.bb) self.pp = copy.deepcopy(target.pp) self.hk = copy.deepcopy(target.hk) def LN(self, xx, w): return F.layer_norm(xx, (self.n_embd,), weight=w.weight, bias=w.bias) def FF(self, xx, w, name): if name not in self.xx: self.xx[name] = torch.zeros(self.n_embd, device=self.RUN_DEVICE) xk = xx * w.time_mix_k + self.xx[name] * (1 - w.time_mix_k) xr = xx * w.time_mix_r + self.xx[name] * (1 - w.time_mix_r) self.xx[name] = xx r = torch.sigmoid(w.receptance.weight @ xr) k = torch.square(torch.relu(w.key.weight @ xk)) kv = w.value.weight @ k return r * kv def SA(self, xx, w, name): if name not in self.xx: self.xx[name] = torch.zeros(self.n_embd, device=self.RUN_DEVICE) self.aa[name] = torch.zeros(self.n_embd, device=self.RUN_DEVICE) self.bb[name] = torch.zeros(self.n_embd, device=self.RUN_DEVICE) self.pp[name] = torch.zeros(self.n_embd, device=self.RUN_DEVICE) - 1e30 xk = xx * w.time_mix_k + self.xx[name] * (1 - w.time_mix_k) xv = xx * w.time_mix_v + self.xx[name] * (1 - w.time_mix_v) xr = xx * w.time_mix_r + self.xx[name] * (1 - w.time_mix_r) self.xx[name] = xx r = torch.sigmoid(w.receptance.weight @ xr) k = w.key.weight @ xk v = w.value.weight @ xv pp = self.pp[name] aa = self.aa[name] bb = self.bb[name] ww = w.time_first + k p = torch.maximum(pp, ww) e1 = torch.exp(pp - p) e2 = torch.exp(ww - p) a = e1 * aa + e2 * v b = e1 * bb + e2 ww = pp + w.time_decay p = torch.maximum(ww, k) e1 = torch.exp(ww - p) e2 = torch.exp(k - p) self.aa[name] = e1 * aa + e2 * v self.bb[name] = e1 * bb + e2 self.pp[name] = p rwkv = r * a / b return w.output.weight @ rwkv def run(self, ctx): w = self.w x = w.emb.weight[ctx[-1]] for i in range(self.n_layer): if i == 0: x = self.LN(x, w.blocks[i].ln0) if i == 0 and self.model_type == 'RWKV-ffnPre': x = x + self.FF(self.LN(x, w.blocks[i].ln1), w.blocks[i].ffnPre, f'ffnPre.{i}') else: x = x + self.SA(self.LN(x, w.blocks[i].ln1), w.blocks[i].att, f'att.{i}') x = x + self.FF(self.LN(x, w.blocks[i].ln2), w.blocks[i].ffn, f'ffn.{i}') x = self.LN(x, w.ln_out) if RWKV_HEAD_QK_DIM > 0: if self.hk == None: self.hk = (w.head_k.weight @ x).unsqueeze(0) else: self.hk = torch.cat( [self.hk, (w.head_k.weight @ x).unsqueeze(0)], dim=0) if self.hk.shape[0] > self.ctx_len: self.hk = self.hk[-self.ctx_len:, :] q = w.head_q.weight @ x x = w.head.weight @ x x = x.cpu().numpy().tolist() c = (self.hk @ q) / RWKV_HEAD_QK_DIM for i in range(len(c)): x[ctx[i]] += c[i] else: x = w.head.weight @ x x = x.cpu().numpy().tolist() return x