# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for object_detection.metrics.""" import numpy as np import tensorflow as tf from object_detection.utils import metrics class MetricsTest(tf.test.TestCase): def test_compute_cor_loc(self): num_gt_imgs_per_class = np.array([100, 1, 5, 1, 1], dtype=int) num_images_correctly_detected_per_class = np.array( [10, 0, 1, 0, 0], dtype=int) corloc = metrics.compute_cor_loc(num_gt_imgs_per_class, num_images_correctly_detected_per_class) expected_corloc = np.array([0.1, 0, 0.2, 0, 0], dtype=float) self.assertTrue(np.allclose(corloc, expected_corloc)) def test_compute_cor_loc_nans(self): num_gt_imgs_per_class = np.array([100, 0, 0, 1, 1], dtype=int) num_images_correctly_detected_per_class = np.array( [10, 0, 1, 0, 0], dtype=int) corloc = metrics.compute_cor_loc(num_gt_imgs_per_class, num_images_correctly_detected_per_class) expected_corloc = np.array([0.1, np.nan, np.nan, 0, 0], dtype=float) self.assertAllClose(corloc, expected_corloc) def test_compute_precision_recall(self): num_gt = 10 scores = np.array([0.4, 0.3, 0.6, 0.2, 0.7, 0.1], dtype=float) labels = np.array([0, 1, 1, 0, 0, 1], dtype=bool) labels_float_type = np.array([0, 1, 1, 0, 0, 1], dtype=float) accumulated_tp_count = np.array([0, 1, 1, 2, 2, 3], dtype=float) expected_precision = accumulated_tp_count / np.array([1, 2, 3, 4, 5, 6]) expected_recall = accumulated_tp_count / num_gt precision, recall = metrics.compute_precision_recall(scores, labels, num_gt) precision_float_type, recall_float_type = metrics.compute_precision_recall( scores, labels_float_type, num_gt) self.assertAllClose(precision, expected_precision) self.assertAllClose(recall, expected_recall) self.assertAllClose(precision_float_type, expected_precision) self.assertAllClose(recall_float_type, expected_recall) def test_compute_precision_recall_float(self): num_gt = 10 scores = np.array([0.4, 0.3, 0.6, 0.2, 0.7, 0.1], dtype=float) labels_float = np.array([0, 1, 1, 0.5, 0, 1], dtype=float) expected_precision = np.array( [0., 0.5, 0.33333333, 0.5, 0.55555556, 0.63636364], dtype=float) expected_recall = np.array([0., 0.1, 0.1, 0.2, 0.25, 0.35], dtype=float) precision, recall = metrics.compute_precision_recall( scores, labels_float, num_gt) self.assertAllClose(precision, expected_precision) self.assertAllClose(recall, expected_recall) def test_compute_average_precision(self): precision = np.array([0.8, 0.76, 0.9, 0.65, 0.7, 0.5, 0.55, 0], dtype=float) recall = np.array([0.3, 0.3, 0.4, 0.4, 0.45, 0.45, 0.5, 0.5], dtype=float) processed_precision = np.array( [0.9, 0.9, 0.9, 0.7, 0.7, 0.55, 0.55, 0], dtype=float) recall_interval = np.array([0.3, 0, 0.1, 0, 0.05, 0, 0.05, 0], dtype=float) expected_mean_ap = np.sum(recall_interval * processed_precision) mean_ap = metrics.compute_average_precision(precision, recall) self.assertAlmostEqual(expected_mean_ap, mean_ap) def test_compute_precision_recall_and_ap_no_groundtruth(self): num_gt = 0 scores = np.array([0.4, 0.3, 0.6, 0.2, 0.7, 0.1], dtype=float) labels = np.array([0, 0, 0, 0, 0, 0], dtype=bool) expected_precision = None expected_recall = None precision, recall = metrics.compute_precision_recall(scores, labels, num_gt) self.assertEquals(precision, expected_precision) self.assertEquals(recall, expected_recall) ap = metrics.compute_average_precision(precision, recall) self.assertTrue(np.isnan(ap)) def test_compute_recall_at_k(self): num_gt = 4 tp_fp = [ np.array([1, 0, 0], dtype=float), np.array([0, 1], dtype=float), np.array([0, 0, 0, 0, 0], dtype=float) ] tp_fp_bool = [ np.array([True, False, False], dtype=bool), np.array([False, True], dtype=float), np.array([False, False, False, False, False], dtype=float) ] recall_1 = metrics.compute_recall_at_k(tp_fp, num_gt, 1) recall_3 = metrics.compute_recall_at_k(tp_fp, num_gt, 3) recall_5 = metrics.compute_recall_at_k(tp_fp, num_gt, 5) recall_3_bool = metrics.compute_recall_at_k(tp_fp_bool, num_gt, 3) self.assertAlmostEqual(recall_1, 0.25) self.assertAlmostEqual(recall_3, 0.5) self.assertAlmostEqual(recall_3_bool, 0.5) self.assertAlmostEqual(recall_5, 0.5) def test_compute_median_rank_at_k(self): tp_fp = [ np.array([1, 0, 0], dtype=float), np.array([0, 0.1], dtype=float), np.array([0, 0, 0, 0, 0], dtype=float) ] tp_fp_bool = [ np.array([True, False, False], dtype=bool), np.array([False, True], dtype=float), np.array([False, False, False, False, False], dtype=float) ] median_ranks_1 = metrics.compute_median_rank_at_k(tp_fp, 1) median_ranks_3 = metrics.compute_median_rank_at_k(tp_fp, 3) median_ranks_5 = metrics.compute_median_rank_at_k(tp_fp, 5) median_ranks_3_bool = metrics.compute_median_rank_at_k(tp_fp_bool, 3) self.assertEquals(median_ranks_1, 0) self.assertEquals(median_ranks_3, 0.5) self.assertEquals(median_ranks_3_bool, 0.5) self.assertEquals(median_ranks_5, 0.5) if __name__ == '__main__': tf.test.main()