# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Base box coder. Box coders convert between coordinate frames, namely image-centric (with (0,0) on the top left of image) and anchor-centric (with (0,0) being defined by a specific anchor). Users of a BoxCoder can call two methods: encode: which encodes a box with respect to a given anchor (or rather, a tensor of boxes wrt a corresponding tensor of anchors) and decode: which inverts this encoding with a decode operation. In both cases, the arguments are assumed to be in 1-1 correspondence already; it is not the job of a BoxCoder to perform matching. """ from abc import ABCMeta from abc import abstractmethod from abc import abstractproperty import tensorflow as tf # Box coder types. FASTER_RCNN = 'faster_rcnn' KEYPOINT = 'keypoint' MEAN_STDDEV = 'mean_stddev' SQUARE = 'square' class BoxCoder(object): """Abstract base class for box coder.""" __metaclass__ = ABCMeta @abstractproperty def code_size(self): """Return the size of each code. This number is a constant and should agree with the output of the `encode` op (e.g. if rel_codes is the output of self.encode(...), then it should have shape [N, code_size()]). This abstractproperty should be overridden by implementations. Returns: an integer constant """ pass def encode(self, boxes, anchors): """Encode a box list relative to an anchor collection. Args: boxes: BoxList holding N boxes to be encoded anchors: BoxList of N anchors Returns: a tensor representing N relative-encoded boxes """ with tf.name_scope('Encode'): return self._encode(boxes, anchors) def decode(self, rel_codes, anchors): """Decode boxes that are encoded relative to an anchor collection. Args: rel_codes: a tensor representing N relative-encoded boxes anchors: BoxList of anchors Returns: boxlist: BoxList holding N boxes encoded in the ordinary way (i.e., with corners y_min, x_min, y_max, x_max) """ with tf.name_scope('Decode'): return self._decode(rel_codes, anchors) @abstractmethod def _encode(self, boxes, anchors): """Method to be overriden by implementations. Args: boxes: BoxList holding N boxes to be encoded anchors: BoxList of N anchors Returns: a tensor representing N relative-encoded boxes """ pass @abstractmethod def _decode(self, rel_codes, anchors): """Method to be overriden by implementations. Args: rel_codes: a tensor representing N relative-encoded boxes anchors: BoxList of anchors Returns: boxlist: BoxList holding N boxes encoded in the ordinary way (i.e., with corners y_min, x_min, y_max, x_max) """ pass def batch_decode(encoded_boxes, box_coder, anchors): """Decode a batch of encoded boxes. This op takes a batch of encoded bounding boxes and transforms them to a batch of bounding boxes specified by their corners in the order of [y_min, x_min, y_max, x_max]. Args: encoded_boxes: a float32 tensor of shape [batch_size, num_anchors, code_size] representing the location of the objects. box_coder: a BoxCoder object. anchors: a BoxList of anchors used to encode `encoded_boxes`. Returns: decoded_boxes: a float32 tensor of shape [batch_size, num_anchors, coder_size] representing the corners of the objects in the order of [y_min, x_min, y_max, x_max]. Raises: ValueError: if batch sizes of the inputs are inconsistent, or if the number of anchors inferred from encoded_boxes and anchors are inconsistent. """ encoded_boxes.get_shape().assert_has_rank(3) if encoded_boxes.get_shape()[1].value != anchors.num_boxes_static(): raise ValueError('The number of anchors inferred from encoded_boxes' ' and anchors are inconsistent: shape[1] of encoded_boxes' ' %s should be equal to the number of anchors: %s.' % (encoded_boxes.get_shape()[1].value, anchors.num_boxes_static())) decoded_boxes = tf.stack([ box_coder.decode(boxes, anchors).get() for boxes in tf.unstack(encoded_boxes) ]) return decoded_boxes