import gradio as gr import torch from ultralyticsplus import YOLO, render_result torch.hub.download_url_to_file('https://as1.ftcdn.net/v2/jpg/01/85/59/30/1000_F_185593012_ed2xkZFSC9B66fNCBkoURPYht8dwRjJw.jpg', 'one.jpg') torch.hub.download_url_to_file('https://st4.depositphotos.com/3687893/27930/i/450/depositphotos_279301742-stock-photo-parasite-egg-ascaris-lumbricoides-find.jpg', 'two.jpg') torch.hub.download_url_to_file('https://sanangelo.tamu.edu/files/2021/06/Image_4_whipworm_egg.jpg', 'three.jpg') def para_func(image: gr.Image = None, image_size: gr.Slider = 640, conf_threshold: gr.Slider = 0.4, iou_threshold: gr.Slider = 0.50): model = YOLO('best.pt') # Custom trained model # Perform object detection on the input image using YOLO model results = model.predict(image, conf=conf_threshold, iou=iou_threshold, imgsz=image_size) # Print the detected objects' information (class, coordinates, and probability) box = results[0].boxes print("Object type:", box.cls) print("Coordinates:", box.xyxy) print("Probability:", box.conf) # Render the output image with bounding boxes around detected objects render = render_result(model=model, image=image, result=results[0]) return render # Define input and output components for Gradio interface inputs = [ gr.Image(type="filepath", label="Input Image"), gr.Slider(minimum=320, maximum=1280, value=640, step=32, label="Image Size"), gr.Slider(minimum=0.0, maximum=1.0, value=0.25, step=0.05, label="Confidence Threshold"), gr.Slider(minimum=0.0, maximum=1.0, value=0.45, step=0.05, label="IOU Threshold"), ] outputs = gr.Image(type="filepath", label="Output Image") title = "Detection and Classification of Parasite Eggs in Microscopic Images with YOLOv8" examples = [['one.jpg', 640, 0.5, 0.5], ['two.jpg', 800, 0.7, 0.5], ['three.jpg', 800, 0.8, 0.5]] # Creating the Gradio interface yolo_app = gr.Interface( fn=para_func, inputs=inputs, outputs=outputs, title=title, examples=examples, cache_examples=True, ) # Launch the Gradio interface in debug mode with queue enabled yolo_app.launch(debug=True)