Pankaj Singh Rawat
commited on
Commit
•
dbfbc03
0
Parent(s):
Initial commit
Browse files- .gitattributes +36 -0
- .gitignore +2 -0
- C3W3_Assignment.ipynb +0 -0
- README.md +13 -0
- __pycache__/inference.cpython-312.pyc +0 -0
- app.py +20 -0
- inference.py +45 -0
- model/trained_model.keras +3 -0
- requirements.txt +5 -0
.gitattributes
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.keras filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
seasme
|
2 |
+
data
|
C3W3_Assignment.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
README.md
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Questions Similarity
|
3 |
+
emoji: 🐠
|
4 |
+
colorFrom: gray
|
5 |
+
colorTo: gray
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 4.44.1
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
short_description: Checks similarity among two questions using Seasme network.
|
11 |
+
---
|
12 |
+
|
13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
__pycache__/inference.cpython-312.pyc
ADDED
Binary file (2.04 kB). View file
|
|
app.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from inference import predict
|
2 |
+
import gradio as gr
|
3 |
+
|
4 |
+
# Function to call the FastAPI backend
|
5 |
+
def predict(question1, question2, threshold):
|
6 |
+
|
7 |
+
similarity, is_same = predict(question1, question2, threshold, verbose=True)
|
8 |
+
|
9 |
+
return similarity, is_same
|
10 |
+
|
11 |
+
|
12 |
+
# Launch the Gradio interface
|
13 |
+
if __name__ == "__main__":
|
14 |
+
gr.Interface(predict,
|
15 |
+
inputs=[gr.Textbox(placeholder="Is Leonel Messi the Goat ?"),
|
16 |
+
gr.Textbox(placeholder="Is Leonel Messi the best player ever?"),
|
17 |
+
gr.Slider(minimum=0.0, maximum=1.0)],
|
18 |
+
outputs=["number", "textbox"],
|
19 |
+
description="This app tells us whether the two questions are similar or not"
|
20 |
+
)
|
inference.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tensorflow as tf
|
2 |
+
import numpy
|
3 |
+
model = tf.keras.models.load_model('./model/trained_model.keras', safe_mode=False, compile=False)
|
4 |
+
|
5 |
+
# Show the model architecture
|
6 |
+
model.summary()
|
7 |
+
|
8 |
+
# GRADED FUNCTION: predict
|
9 |
+
def predict(question1, question2, threshold, verbose=False):
|
10 |
+
"""Function for predicting if two questions are duplicates.
|
11 |
+
|
12 |
+
Args:
|
13 |
+
question1 (str): First question.
|
14 |
+
question2 (str): Second question.
|
15 |
+
threshold (float): Desired threshold.
|
16 |
+
verbose (bool, optional): If the results should be printed out. Defaults to False.
|
17 |
+
|
18 |
+
Returns:
|
19 |
+
bool: True if the questions are duplicates, False otherwise.
|
20 |
+
"""
|
21 |
+
generator = tf.data.Dataset.from_tensor_slices((([question1], [question2]),None)).batch(batch_size=1)
|
22 |
+
|
23 |
+
### START CODE HERE ###
|
24 |
+
|
25 |
+
# Call the predict method of your model and save the output into v1v2
|
26 |
+
v1v2 = model.predict(generator)
|
27 |
+
out_size = v1v2.shape[1]
|
28 |
+
# Extract v1 and v2 from the model output
|
29 |
+
v1 = v1v2[:,:int(out_size/2)]
|
30 |
+
v2 = v1v2[:,int(out_size/2):]
|
31 |
+
print(v1.shape)
|
32 |
+
# Take the dot product to compute cos similarity of each pair of entries, v1, v2
|
33 |
+
# Since v1 and v2 are both vectors, use the function tf.math.reduce_sum instead of tf.linalg.matmul
|
34 |
+
d = tf.reduce_sum(v1 * v2)
|
35 |
+
# Is d greater than the threshold?
|
36 |
+
res = d > threshold
|
37 |
+
|
38 |
+
### END CODE HERE ###
|
39 |
+
|
40 |
+
if(verbose):
|
41 |
+
print("Q1 = ", question1, "\nQ2 = ", question2)
|
42 |
+
print("d = ", d.numpy())
|
43 |
+
print("res = ", res.numpy())
|
44 |
+
|
45 |
+
return d.numpy(), res.numpy()
|
model/trained_model.keras
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:882a852a01cf4bfc3c029089855f1082df1944b7ef2b32a142db341fd668fb9b
|
3 |
+
size 57860766
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
tensorflow==2.13.0
|
3 |
+
keras==2.13.1
|
4 |
+
numpy
|
5 |
+
pandas
|