""" huggingface model adapter Wraps HuggingFace transformers (https://github.com/huggingface/transformers) models for use as a text tower in CLIP model. """ import re import torch import torch.nn as nn from torch.nn import functional as F from torch import TensorType try: import transformers from transformers import AutoModel, AutoModelForMaskedLM, AutoTokenizer, AutoConfig, PretrainedConfig from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, \ BaseModelOutputWithPoolingAndCrossAttentions except ImportError as e: transformers = None class BaseModelOutput: pass class PretrainedConfig: pass from .hf_configs import arch_dict # utils def _camel2snake(s): return re.sub(r'(? TensorType: # image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(x.device) # attn_mask = (x != self.config.pad_token_id).long() # out = self.transformer( # input_ids=x, # attention_mask=attn_mask, # encoder_hidden_states = image_embeds, # encoder_attention_mask = image_atts, # ) # pooled_out = self.pooler(out, attn_mask) # return self.itm_proj(pooled_out) def mask(self, input_ids, vocab_size, device, targets=None, masked_indices=None, probability_matrix=None): if masked_indices is None: masked_indices = torch.bernoulli(probability_matrix).bool() masked_indices[input_ids == self.tokenizer.pad_token_id] = False masked_indices[input_ids == self.tokenizer.cls_token_id] = False if targets is not None: targets[~masked_indices] = -100 # We only compute loss on masked tokens # 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK]) indices_replaced = torch.bernoulli(torch.full(input_ids.shape, 0.8)).bool() & masked_indices input_ids[indices_replaced] = self.tokenizer.mask_token_id # 10% of the time, we replace masked input tokens with random word indices_random = torch.bernoulli(torch.full(input_ids.shape, 0.5)).bool() & masked_indices & ~indices_replaced random_words = torch.randint(vocab_size, input_ids.shape, dtype=torch.long).to(device) input_ids[indices_random] = random_words[indices_random] # The rest of the time (10% of the time) we keep the masked input tokens unchanged if targets is not None: return input_ids, targets else: return input_ids def forward_mlm(self, input_ids, image_embeds, mlm_probability=0.25): labels = input_ids.clone() attn_mask = (input_ids != self.config.pad_token_id).long() image_atts = torch.ones(image_embeds.size()[:-1],dtype=torch.long).to(input_ids.device) vocab_size = getattr(self.config, arch_dict[self.config.model_type]["config_names"]["vocab_size"]) probability_matrix = torch.full(labels.shape, mlm_probability) input_ids, labels = self.mask(input_ids, vocab_size, input_ids.device, targets=labels, probability_matrix = probability_matrix) mlm_output = self.transformer(input_ids, attention_mask = attn_mask, encoder_hidden_states = image_embeds, encoder_attention_mask = image_atts, return_dict = True, labels = labels, ) return mlm_output.loss # mlm_output = self.transformer(input_ids, # attention_mask = attn_mask, # encoder_hidden_states = image_embeds, # encoder_attention_mask = image_atts, # return_dict = True, # ).last_hidden_state # logits = self.mlm_proj(mlm_output) # # logits = logits[:, :-1, :].contiguous().view(-1, vocab_size) # logits = logits[:, 1:, :].contiguous().view(-1, vocab_size) # labels = labels[:, 1:].contiguous().view(-1) # mlm_loss = F.cross_entropy( # logits, # labels, # # label_smoothing=0.1, # ) # return mlm_loss def forward(self, x:TensorType) -> TensorType: attn_mask = (x != self.config.pad_token_id).long() out = self.transformer(input_ids=x, attention_mask=attn_mask) pooled_out = self.pooler(out, attn_mask) return self.proj(pooled_out) def lock(self, unlocked_layers:int=0, freeze_layer_norm:bool=True): if not unlocked_layers: # full freezing for n, p in self.transformer.named_parameters(): p.requires_grad = (not freeze_layer_norm) if "LayerNorm" in n.split(".") else False return encoder = self.transformer.encoder if hasattr(self.transformer, 'encoder') else self.transformer layer_list = getattr(encoder, arch_dict[self.config.model_type]["config_names"]["layer_attr"]) print(f"Unlocking {unlocked_layers}/{len(layer_list) + 1} layers of hf model") embeddings = getattr( self.transformer, arch_dict[self.config.model_type]["config_names"]["token_embeddings_attr"]) modules = [embeddings, *layer_list][:-unlocked_layers] # freeze layers for module in modules: for n, p in module.named_parameters(): p.requires_grad = (not freeze_layer_norm) if "LayerNorm" in n.split(".") else False @torch.jit.ignore def set_grad_checkpointing(self, enable=True): self.transformer.gradient_checkpointing_enable() def get_num_layers(self): encoder = self.transformer.encoder if hasattr(self.transformer, 'encoder') else self.transformer layer_list = getattr(encoder, arch_dict[self.config.model_type]["config_names"]["layer_attr"]) return len(layer_list) def init_parameters(self): pass