# -------------------------------------------------------- # Adapted from https://github.com/microsoft/unilm/tree/master/beit # -------------------------------------------------------- import math import os from functools import partial from itertools import repeat import collections.abc import torch import torch.nn as nn import warnings import torch.nn.functional as F from .transformer import PatchDropout from .rope import VisionRotaryEmbedding, VisionRotaryEmbeddingFast if os.getenv('ENV_TYPE') == 'deepspeed': try: from deepspeed.runtime.activation_checkpointing.checkpointing import checkpoint except: from torch.utils.checkpoint import checkpoint else: from torch.utils.checkpoint import checkpoint try: import xformers import xformers.ops as xops XFORMERS_IS_AVAILBLE = True except: XFORMERS_IS_AVAILBLE = False def _ntuple(n): def parse(x): if isinstance(x, collections.abc.Iterable): return x return tuple(repeat(x, n)) return parse to_2tuple = _ntuple(2) def _no_grad_trunc_normal_(tensor, mean, std, a, b): # Cut & paste from PyTorch official master until it's in a few official releases - RW # Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf def norm_cdf(x): # Computes standard normal cumulative distribution function return (1. + math.erf(x / math.sqrt(2.))) / 2. if (mean < a - 2 * std) or (mean > b + 2 * std): warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. " "The distribution of values may be incorrect.", stacklevel=2) with torch.no_grad(): # Values are generated by using a truncated uniform distribution and # then using the inverse CDF for the normal distribution. # Get upper and lower cdf values l = norm_cdf((a - mean) / std) u = norm_cdf((b - mean) / std) # Uniformly fill tensor with values from [l, u], then translate to # [2l-1, 2u-1]. tensor.uniform_(2 * l - 1, 2 * u - 1) # Use inverse cdf transform for normal distribution to get truncated # standard normal tensor.erfinv_() # Transform to proper mean, std tensor.mul_(std * math.sqrt(2.)) tensor.add_(mean) # Clamp to ensure it's in the proper range tensor.clamp_(min=a, max=b) return tensor def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.): # type: (Tensor, float, float, float, float) -> Tensor r"""Fills the input Tensor with values drawn from a truncated normal distribution. The values are effectively drawn from the normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)` with values outside :math:`[a, b]` redrawn until they are within the bounds. The method used for generating the random values works best when :math:`a \leq \text{mean} \leq b`. Args: tensor: an n-dimensional `torch.Tensor` mean: the mean of the normal distribution std: the standard deviation of the normal distribution a: the minimum cutoff value b: the maximum cutoff value Examples: >>> w = torch.empty(3, 5) >>> nn.init.trunc_normal_(w) """ return _no_grad_trunc_normal_(tensor, mean, std, a, b) def drop_path(x, drop_prob: float = 0., training: bool = False, scale_by_keep: bool = True): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). This is the same as the DropConnect impl I created for EfficientNet, etc networks, however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper... See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the argument. """ if drop_prob == 0. or not training: return x keep_prob = 1 - drop_prob shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets random_tensor = x.new_empty(shape).bernoulli_(keep_prob) if keep_prob > 0.0 and scale_by_keep: random_tensor.div_(keep_prob) return x * random_tensor class DropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). """ def __init__(self, drop_prob=None): super(DropPath, self).__init__() self.drop_prob = drop_prob def forward(self, x): return drop_path(x, self.drop_prob, self.training) def extra_repr(self) -> str: return 'p={}'.format(self.drop_prob) class Mlp(nn.Module): def __init__( self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm, drop=0., subln=False, ): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.ffn_ln = norm_layer(hidden_features) if subln else nn.Identity() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) # x = self.drop(x) # commit this for the orignal BERT implement x = self.ffn_ln(x) x = self.fc2(x) x = self.drop(x) return x class SwiGLU(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.SiLU, drop=0., norm_layer=nn.LayerNorm, subln=False): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.w1 = nn.Linear(in_features, hidden_features) self.w2 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.ffn_ln = norm_layer(hidden_features) if subln else nn.Identity() self.w3 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x1 = self.w1(x) x2 = self.w2(x) hidden = self.act(x1) * x2 x = self.ffn_ln(hidden) x = self.w3(x) x = self.drop(x) return x class Attention(nn.Module): def __init__( self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., window_size=None, attn_head_dim=None, xattn=False, rope=None, subln=False, norm_layer=nn.LayerNorm): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads if attn_head_dim is not None: head_dim = attn_head_dim all_head_dim = head_dim * self.num_heads self.scale = qk_scale or head_dim ** -0.5 self.subln = subln if self.subln: self.q_proj = nn.Linear(dim, all_head_dim, bias=False) self.k_proj = nn.Linear(dim, all_head_dim, bias=False) self.v_proj = nn.Linear(dim, all_head_dim, bias=False) else: self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False) if qkv_bias: self.q_bias = nn.Parameter(torch.zeros(all_head_dim)) self.v_bias = nn.Parameter(torch.zeros(all_head_dim)) else: self.q_bias = None self.v_bias = None if window_size: self.window_size = window_size self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 self.relative_position_bias_table = nn.Parameter( torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH # cls to token & token 2 cls & cls to cls # get pair-wise relative position index for each token inside the window coords_h = torch.arange(window_size[0]) coords_w = torch.arange(window_size[1]) coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0 relative_coords[:, :, 1] += window_size[1] - 1 relative_coords[:, :, 0] *= 2 * window_size[1] - 1 relative_position_index = \ torch.zeros(size=(window_size[0] * window_size[1] + 1, ) * 2, dtype=relative_coords.dtype) relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww relative_position_index[0, 0:] = self.num_relative_distance - 3 relative_position_index[0:, 0] = self.num_relative_distance - 2 relative_position_index[0, 0] = self.num_relative_distance - 1 self.register_buffer("relative_position_index", relative_position_index) else: self.window_size = None self.relative_position_bias_table = None self.relative_position_index = None self.attn_drop = nn.Dropout(attn_drop) self.inner_attn_ln = norm_layer(all_head_dim) if subln else nn.Identity() # self.proj = nn.Linear(all_head_dim, all_head_dim) self.proj = nn.Linear(all_head_dim, dim) self.proj_drop = nn.Dropout(proj_drop) self.xattn = xattn self.xattn_drop = attn_drop self.rope = rope def forward(self, x, rel_pos_bias=None, attn_mask=None): B, N, C = x.shape if self.subln: q = F.linear(input=x, weight=self.q_proj.weight, bias=self.q_bias) k = F.linear(input=x, weight=self.k_proj.weight, bias=None) v = F.linear(input=x, weight=self.v_proj.weight, bias=self.v_bias) q = q.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3) # B, num_heads, N, C k = k.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3) v = v.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3) else: qkv_bias = None if self.q_bias is not None: qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias)) qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias) qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) # 3, B, num_heads, N, C q, k, v = qkv[0], qkv[1], qkv[2] if self.rope: # slightly fast impl q_t = q[:, :, 1:, :] ro_q_t = self.rope(q_t) q = torch.cat((q[:, :, :1, :], ro_q_t), -2).type_as(v) k_t = k[:, :, 1:, :] ro_k_t = self.rope(k_t) k = torch.cat((k[:, :, :1, :], ro_k_t), -2).type_as(v) if self.xattn: q = q.permute(0, 2, 1, 3) # B, num_heads, N, C -> B, N, num_heads, C k = k.permute(0, 2, 1, 3) v = v.permute(0, 2, 1, 3) x = xops.memory_efficient_attention( q, k, v, p=self.xattn_drop, scale=self.scale, ) x = x.reshape(B, N, -1) x = self.inner_attn_ln(x) x = self.proj(x) x = self.proj_drop(x) else: q = q * self.scale attn = (q @ k.transpose(-2, -1)) if self.relative_position_bias_table is not None: relative_position_bias = \ self.relative_position_bias_table[self.relative_position_index.view(-1)].view( self.window_size[0] * self.window_size[1] + 1, self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww attn = attn + relative_position_bias.unsqueeze(0).type_as(attn) if rel_pos_bias is not None: attn = attn + rel_pos_bias.type_as(attn) if attn_mask is not None: attn_mask = attn_mask.bool() attn = attn.masked_fill(~attn_mask[:, None, None, :], float("-inf")) attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, -1) x = self.inner_attn_ln(x) x = self.proj(x) x = self.proj_drop(x) return x class Block(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm, window_size=None, attn_head_dim=None, xattn=False, rope=None, postnorm=False, subln=False, naiveswiglu=False): super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, window_size=window_size, attn_head_dim=attn_head_dim, xattn=xattn, rope=rope, subln=subln, norm_layer=norm_layer) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) if naiveswiglu: self.mlp = SwiGLU( in_features=dim, hidden_features=mlp_hidden_dim, subln=subln, norm_layer=norm_layer, ) else: self.mlp = Mlp( in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, subln=subln, drop=drop ) if init_values is not None and init_values > 0: self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True) self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True) else: self.gamma_1, self.gamma_2 = None, None self.postnorm = postnorm def forward(self, x, rel_pos_bias=None, attn_mask=None): if self.gamma_1 is None: if self.postnorm: x = x + self.drop_path(self.norm1(self.attn(x, rel_pos_bias=rel_pos_bias, attn_mask=attn_mask))) x = x + self.drop_path(self.norm2(self.mlp(x))) else: x = x + self.drop_path(self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias, attn_mask=attn_mask)) x = x + self.drop_path(self.mlp(self.norm2(x))) else: if self.postnorm: x = x + self.drop_path(self.gamma_1 * self.norm1(self.attn(x, rel_pos_bias=rel_pos_bias, attn_mask=attn_mask))) x = x + self.drop_path(self.gamma_2 * self.norm2(self.mlp(x))) else: x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias, attn_mask=attn_mask)) x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x))) return x class PatchEmbed(nn.Module): """ Image to Patch Embedding """ def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) self.img_size = img_size self.patch_size = patch_size self.num_patches = num_patches self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) def forward(self, x, **kwargs): B, C, H, W = x.shape # FIXME look at relaxing size constraints assert H == self.img_size[0] and W == self.img_size[1], \ f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." x = self.proj(x).flatten(2).transpose(1, 2) return x class RelativePositionBias(nn.Module): def __init__(self, window_size, num_heads): super().__init__() self.window_size = window_size self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 self.relative_position_bias_table = nn.Parameter( torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH # cls to token & token 2 cls & cls to cls # get pair-wise relative position index for each token inside the window coords_h = torch.arange(window_size[0]) coords_w = torch.arange(window_size[1]) coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0 relative_coords[:, :, 1] += window_size[1] - 1 relative_coords[:, :, 0] *= 2 * window_size[1] - 1 relative_position_index = \ torch.zeros(size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype) relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww relative_position_index[0, 0:] = self.num_relative_distance - 3 relative_position_index[0:, 0] = self.num_relative_distance - 2 relative_position_index[0, 0] = self.num_relative_distance - 1 self.register_buffer("relative_position_index", relative_position_index) def forward(self): relative_position_bias = \ self.relative_position_bias_table[self.relative_position_index.view(-1)].view( self.window_size[0] * self.window_size[1] + 1, self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH return relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww class EVAVisionTransformer(nn.Module): """ Vision Transformer with support for patch or hybrid CNN input stage """ def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm, init_values=None, patch_dropout=0., use_abs_pos_emb=True, use_rel_pos_bias=False, use_shared_rel_pos_bias=False, rope=False, use_mean_pooling=True, init_scale=0.001, grad_checkpointing=False, xattn=False, postnorm=False, pt_hw_seq_len=16, intp_freq=False, naiveswiglu=False, subln=False): super().__init__() if not XFORMERS_IS_AVAILBLE: xattn = False self.image_size = img_size self.num_classes = num_classes self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models self.patch_embed = PatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) num_patches = self.patch_embed.num_patches self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) # self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if use_abs_pos_emb: self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) else: self.pos_embed = None self.pos_drop = nn.Dropout(p=drop_rate) if use_shared_rel_pos_bias: self.rel_pos_bias = RelativePositionBias(window_size=self.patch_embed.patch_shape, num_heads=num_heads) else: self.rel_pos_bias = None if rope: half_head_dim = embed_dim // num_heads // 2 hw_seq_len = img_size // patch_size self.rope = VisionRotaryEmbeddingFast( dim=half_head_dim, pt_seq_len=pt_hw_seq_len, ft_seq_len=hw_seq_len if intp_freq else None, # patch_dropout=patch_dropout ) else: self.rope = None self.naiveswiglu = naiveswiglu dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule self.use_rel_pos_bias = use_rel_pos_bias self.blocks = nn.ModuleList([ Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, init_values=init_values, window_size=self.patch_embed.patch_shape if use_rel_pos_bias else None, xattn=xattn, rope=self.rope, postnorm=postnorm, subln=subln, naiveswiglu=naiveswiglu) for i in range(depth)]) self.norm = nn.Identity() if use_mean_pooling else norm_layer(embed_dim) self.fc_norm = norm_layer(embed_dim) if use_mean_pooling else None self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity() if self.pos_embed is not None: trunc_normal_(self.pos_embed, std=.02) trunc_normal_(self.cls_token, std=.02) # trunc_normal_(self.mask_token, std=.02) self.apply(self._init_weights) self.fix_init_weight() if isinstance(self.head, nn.Linear): trunc_normal_(self.head.weight, std=.02) self.head.weight.data.mul_(init_scale) self.head.bias.data.mul_(init_scale) # setting a patch_dropout of 0. would mean it is disabled and this function would be the identity fn self.patch_dropout = PatchDropout(patch_dropout) if patch_dropout > 0. else nn.Identity() self.grad_checkpointing = grad_checkpointing def fix_init_weight(self): def rescale(param, layer_id): param.div_(math.sqrt(2.0 * layer_id)) for layer_id, layer in enumerate(self.blocks): rescale(layer.attn.proj.weight.data, layer_id + 1) if self.naiveswiglu: rescale(layer.mlp.w3.weight.data, layer_id + 1) else: rescale(layer.mlp.fc2.weight.data, layer_id + 1) def get_cast_dtype(self) -> torch.dtype: return self.blocks[0].mlp.fc2.weight.dtype def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) def get_num_layers(self): return len(self.blocks) def lock(self, unlocked_groups=0, freeze_bn_stats=False): assert unlocked_groups == 0, 'partial locking not currently supported for this model' for param in self.parameters(): param.requires_grad = False @torch.jit.ignore def set_grad_checkpointing(self, enable=True): self.grad_checkpointing = enable @torch.jit.ignore def no_weight_decay(self): return {'pos_embed', 'cls_token'} def get_classifier(self): return self.head def reset_classifier(self, num_classes, global_pool=''): self.num_classes = num_classes self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() def forward_features(self, x, return_all_features=False, return_hidden=False, shuffle=False): x = self.patch_embed(x) batch_size, seq_len, _ = x.size() if shuffle: idx = torch.randperm(x.shape[1]) + 1 zero = torch.LongTensor([0, ]) idx = torch.cat([zero, idx]) pos_embed = self.pos_embed[:, idx] cls_tokens = self.cls_token.expand(batch_size, -1, -1) # stole cls_tokens impl from Phil Wang, thanks x = torch.cat((cls_tokens, x), dim=1) if shuffle: x = x + pos_embed elif self.pos_embed is not None: x = x + self.pos_embed x = self.pos_drop(x) # a patch_dropout of 0. would mean it is disabled and this function would do nothing but return what was passed in if os.getenv('RoPE') == '1': if self.training and not isinstance(self.patch_dropout, nn.Identity): x, patch_indices_keep = self.patch_dropout(x) self.rope.forward = partial(self.rope.forward, patch_indices_keep=patch_indices_keep) else: self.rope.forward = partial(self.rope.forward, patch_indices_keep=None) x = self.patch_dropout(x) else: x = self.patch_dropout(x) rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None hidden_states = [] for idx, blk in enumerate(self.blocks): if (0 < idx <= 20) and (idx % 4 == 0) and return_hidden: hidden_states.append(x) if self.grad_checkpointing: x = checkpoint(blk, x, (rel_pos_bias,)) else: x = blk(x, rel_pos_bias=rel_pos_bias) if not return_all_features: x = self.norm(x) if self.fc_norm is not None: return self.fc_norm(x.mean(1)), hidden_states else: return x[:, 0], hidden_states return x def forward(self, x, return_all_features=False, return_hidden=False, shuffle=False): if return_all_features: return self.forward_features(x, return_all_features, return_hidden, shuffle) x, hidden_states = self.forward_features(x, return_all_features, return_hidden, shuffle) x = self.head(x) if return_hidden: return x, hidden_states return x