import gradio as gr import cv2 import numpy as np from keras.preprocessing.image import img_to_array from keras.models import model_from_json # Facial expression recognizer initialization face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') model = model_from_json(open('facial_expression_model_structure.json', 'r').read()) model.load_weights('facial_expression_model_weights.h5') # Define the emotions emotions = ('angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral') # Define the frame scaling factor scaling_factor = 1.0 def blur_image(img): blur = cv2.blur(img,(10, 10)) return blur def process_image(img): # Resize the frame frame = cv2.resize(img, None, fx=scaling_factor, fy=scaling_factor, interpolation=cv2.INTER_AREA) # Convert to grayscale gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # Run the face detector on the grayscale image face_rects = face_cascade.detectMultiScale(gray, 1.3, 5) # Draw a rectangle around the face for (x,y,w,h) in face_rects: #cv2.rectangle(frame, (x,y), (x+w,y+h), (0,255,0), 3) cv2.rectangle(frame,(x,y),(x+w,y+h),(255,0,0),2) #draw rectangle to main image detected_face = frame[int(y):int(y+h), int(x):int(x+w)] #crop detected face detected_face = cv2.cvtColor(detected_face, cv2.COLOR_BGR2GRAY) #transform to gray scale detected_face = cv2.resize(detected_face, (48, 48)) #resize to 48x48 img_pixels = img_to_array(detected_face) img_pixels = np.expand_dims(img_pixels, axis = 0) img_pixels /= 255 #pixels are in scale of [0, 255]. normalize all pixels in scale of [0, 1] predictions = model.predict(img_pixels) #store probabilities of 7 expressions #find max indexed array 0: angry, 1:disgust, 2:fear, 3:happy, 4:sad, 5:surprise, 6:neutral max_index = np.argmax(predictions[0]) emotion = emotions[max_index] #write emotion text above rectangle cv2.putText(frame, emotion, (int(x), int(y)), cv2.FONT_HERSHEY_SIMPLEX, 1, (255,255,255), 2) return frame interface = gr.Interface( fn = process_image, #inputs='image', inputs="webcam", outputs='image', title='Facial Expression', description='Facial expression detection test') interface.launch()