import cv2 import numpy as np class CaesarFaceDetection: def __init__(self) -> None: # https://raw.githubusercontent.com/opencv/opencv/master/samples/dnn/face_detector/deploy.prototxt prototxt_path = "CaesarFaceDetection/weights/deploy.prototxt.txt" # https://raw.githubusercontent.com/opencv/opencv_3rdparty/dnn_samples_face_detector_20180205_fp16/res10_300x300_ssd_iter_140000_fp16.caffemodel model_path = "CaesarFaceDetection/weights/res10_300x300_ssd_iter_140000_fp16.caffemodel" # load Caffe model self.model = cv2.dnn.readNetFromCaffe(prototxt_path, model_path) def detect_face(self,image, showtext=False,snapcropface=False): h, w = image.shape[:2] # preprocess the image: resize and performs mean subtraction blob = cv2.dnn.blobFromImage(image, 1.0, (300, 300), (104.0, 177.0, 123.0)) # set the image into the input of the neural network self.model.setInput(blob) # perform inference and get the result output = np.squeeze(self.model.forward()) font_scale = 1.0 for i in range(0, output.shape[0]): # get the confidence confidence = output[i, 2] # if confidence is above 50%, then draw the surrounding box if confidence > 0.5: # get the surrounding box cordinates and upscale them to original image box = output[i, 3:7] * np.array([w, h, w, h]) # convert to integers start_x, start_y, end_x, end_y = box.astype(np.int) # draw the rectangle surrounding the face start_point = (start_x, start_y) end_point = (end_x, end_y) if snapcropface == True: factor_add = 20 crop_img = image[start_y- factor_add:end_y+ factor_add, start_x- factor_add:end_x + factor_add] return crop_img #cv2.imshow("cropped", crop_img) #cv2.waitKey(0) cv2.rectangle(image,start_point,end_point, color=(255, 0, 0), thickness=2) # draw text as well if showtext == True: cv2.putText(image, f"{confidence*100:.2f}%", (start_x, start_y-5), cv2.FONT_HERSHEY_SIMPLEX, font_scale, (255, 0, 0), 2) if snapcropface != True: return image