import numpy as np from PIL import Image from os.path import * import re import cv2 cv2.setNumThreads(0) TAG_CHAR = np.array([202021.25], np.float32) def readFlowKITTI(filename): flow = cv2.imread(filename, cv2.IMREAD_ANYDEPTH|cv2.IMREAD_COLOR) flow = flow[:,:,::-1].astype(np.float32) flow, valid = flow[:, :, :2], flow[:, :, 2] flow = (flow - 2**15) / 64.0 return flow, valid def readFlow(fn): """ Read .flo file in Middlebury format""" # Code adapted from: # http://stackoverflow.com/questions/28013200/reading-middlebury-flow-files-with-python-bytes-array-numpy # WARNING: this will work on little-endian architectures (eg Intel x86) only! # print 'fn = %s'%(fn) with open(fn, 'rb') as f: magic = np.fromfile(f, np.float32, count=1) if 202021.25 != magic: print('Magic number incorrect. Invalid .flo file') return None else: w = np.fromfile(f, np.int32, count=1) h = np.fromfile(f, np.int32, count=1) # print 'Reading %d x %d flo file\n' % (w, h) data = np.fromfile(f, np.float32, count=2*int(w)*int(h)) # Reshape data into 3D array (columns, rows, bands) # The reshape here is for visualization, the original code is (w,h,2) return np.resize(data, (int(h), int(w), 2)) def readPFM(file): file = open(file, 'rb') color = None width = None height = None scale = None endian = None header = file.readline().rstrip() if header == b'PF': color = True elif header == b'Pf': color = False else: raise Exception('Not a PFM file.') try: dim_match = re.match(rb'^(\d+)\s(\d+)\s$', file.readline()) except: dim_match = re.match(r'^(\d+)\s(\d+)\s$', file.readline()) if dim_match: width, height = map(int, dim_match.groups()) else: raise Exception('Malformed PFM header.') scale = float(file.readline().rstrip()) if scale < 0: # little-endian endian = '<' scale = -scale else: endian = '>' # big-endian data = np.fromfile(file, endian + 'f') shape = (height, width, 3) if color else (height, width) data = np.reshape(data, shape) data = np.flipud(data) return data def writeFlow(filename,uv,v=None): """ Write optical flow to file. If v is None, uv is assumed to contain both u and v channels, stacked in depth. Original code by Deqing Sun, adapted from Daniel Scharstein. """ nBands = 2 if v is None: assert(uv.ndim == 3) assert(uv.shape[2] == 2) u = uv[:,:,0] v = uv[:,:,1] else: u = uv assert(u.shape == v.shape) height,width = u.shape f = open(filename,'wb') # write the header f.write(TAG_CHAR) np.array(width).astype(np.int32).tofile(f) np.array(height).astype(np.int32).tofile(f) # arrange into matrix form tmp = np.zeros((height, width*nBands)) tmp[:,np.arange(width)*2] = u tmp[:,np.arange(width)*2 + 1] = v tmp.astype(np.float32).tofile(f) f.close() def readDPT(filename): """ Read depth data from file, return as numpy array. """ f = open(filename,'rb') check = np.fromfile(f,dtype=np.float32,count=1)[0] TAG_FLOAT = 202021.25 TAG_CHAR = 'PIEH' assert check == TAG_FLOAT, ' depth_read:: Wrong tag in flow file (should be: {0}, is: {1}). Big-endian machine? '.format(TAG_FLOAT,check) width = np.fromfile(f,dtype=np.int32,count=1)[0] height = np.fromfile(f,dtype=np.int32,count=1)[0] size = width*height assert width > 0 and height > 0 and size > 1 and size < 100000000, ' depth_read:: Wrong input size (width = {0}, height = {1}).'.format(width,height) depth = np.fromfile(f,dtype=np.float32,count=-1).reshape((height,width)) return depth def cam_read(filename): """ Read camera data, return (M,N) tuple. M is the intrinsic matrix, N is the extrinsic matrix, so that x = M*N*X, with x being a point in homogeneous image pixel coordinates, X being a point in homogeneous world coordinates.""" f = open(filename,'rb') check = np.fromfile(f,dtype=np.float32,count=1)[0] M = np.fromfile(f,dtype='float64',count=9).reshape((3,3)) N = np.fromfile(f,dtype='float64',count=12).reshape((3,4)) E = np.eye(4) E[0:3,:] = N fx, fy, cx, cy = M[0,0], M[1,1], M[0,2], M[1,2] kvec = np.array([fx, fy, cx, cy]) q = Rotation.from_matrix(E[:3,:3]).as_quat() pvec = np.concatenate([E[:3,3], q], 0) return pvec, kvec def read_gen(file_name, pil=False): ext = splitext(file_name)[-1] if ext == '.png' or ext == '.jpeg' or ext == '.ppm' or ext == '.jpg': return Image.open(file_name) elif ext == '.bin' or ext == '.raw': return np.load(file_name) elif ext == '.flo': return readFlow(file_name).astype(np.float32) elif ext == '.pfm': return readPFM(file_name).astype(np.float32) elif ext == '.dpt': return readDPT(file_name).astype(np.float32) elif ext == '.cam': return cam_read(file_name) return []